Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Oct 1;191(1):95–102. doi: 10.1042/bj1910095

Kinetics and mechanism of the interaction between human serum albumin and monomeric haemin.

P A Adams, M C Berman
PMCID: PMC1162185  PMID: 7470101

Abstract

The interaction of human serum albumin with monomeric haemin has been investigated by detailed kinetic analysis in dimethyl sulphoxide/water (3:5, v/v). The results obtained under conditions of albumin saturation of haemin and under pseudo-single turnover conditions indicate that methaemalbumin is formed in a two-stage, single-intermediate process. The initial association between the haemin and human serum albumin is a chemically controlled process (k1 = 1.7 X 10(5) mol-1 . s-1 . dm3 at 24 degrees C); the variation of K1 with pH exhibited a well defined pK of 5.9. The overall equilibrium constant, calculated by using microscopic rate constants, is 1.1 (+/- 0.5) X 10(8) mol-1 at 24 degrees C. The data and conclusions are consistent with a general binding mechanism for albumin in which intermediate formation is followed by an entropy-controlled internalization of the ligand.

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaven G. H., Chen S. H., d' Albis A., Gratzer W. B. A spectroscopic study of the haemin--human-serum-albumin system. Eur J Biochem. 1974 Feb 1;41(3):539–546. doi: 10.1111/j.1432-1033.1974.tb03295.x. [DOI] [PubMed] [Google Scholar]
  2. Brown S. B., Lantzke I. R. Solution structures of ferrihaem in some dipolar aprotic solvents and their binary aqueous mixtures. Biochem J. 1969 Nov;115(2):279–285. doi: 10.1042/bj1150279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collier G. S., Pratt J. M., De Wet C. R., Tshabalala C. F. Studies on haemin in dimethyl sulphoxide/water mixtures. Biochem J. 1979 May 1;179(2):281–289. doi: 10.1042/bj1790281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gray R. D., Stroupe S. D. Kinetics and mechanism of bilirubin binding to human serum albumin. J Biol Chem. 1978 Jun 25;253(12):4370–4377. [PubMed] [Google Scholar]
  5. Halford S. E. Escherichia coli alkaline phosphatase. An analysis of transient kinetics. Biochem J. 1971 Nov;125(1):319–327. doi: 10.1042/bj1250319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morgan W. T. Porphyrin-binding proteins in serum. Ann N Y Acad Sci. 1975 Apr 15;244:624–650. doi: 10.1111/j.1749-6632.1975.tb41558.x. [DOI] [PubMed] [Google Scholar]
  7. Parr G. R., Pasternack R. F. The interaction of some water-soluble porphyrins and metalloporphyrins with human serum albumin. Bioinorg Chem. 1977;7(3):277–282. doi: 10.1016/s0006-3061(00)80101-5. [DOI] [PubMed] [Google Scholar]
  8. Scheider W. The rate of access to the organic ligand-binding region of serum albumin is entropy controlled. Proc Natl Acad Sci U S A. 1979 May;76(5):2283–2287. doi: 10.1073/pnas.76.5.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stern J. O., Peisach J. A model compound study of the CO-adduct of cytochrome P-450. J Biol Chem. 1974 Dec 10;249(23):7495–7498. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES