Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jun 1;187(3):695–701. doi: 10.1042/bj1870695

Covalent binding of proteinases in their reaction with alpha 2-macroglobulin.

G S Salvesen, A J Barrett
PMCID: PMC1162453  PMID: 6204637

Abstract

Although it is known that most of the plasma proteinase inhibitors form complexes with proteinases that are not dissociated by SDS (sodium dodecyl sulphate), there has been disagreement as to whether this is true for alpha 2M (alpha 2-macroglobulin). We have examined the stability to SDS with reduction of complexes between alpha 2M and several 125I-labelled proteinases (trypsin, plasmin, leucocyte elastase, pancreatic elastase and papain) by gel electrophoresis. For each enzyme, some molecules were separated from the denatured alpha 2M chains, but amounts ranging from 8.3% (papain) to 61.2% (trypsin) were bound with a stability indicative of a covalent link. Proteolytic activity was essential for the covalent binding to occur, and the proteinase molecules became attached to the larger of the two proteolytic derivatives (apparent mol.wt. 111 000) of the alpha 2M subunit. We take this to mean that cleavage of the proteinase-susceptible site sometimes leads to covalent-bond formation between alpha 2M and proteinase. Whatever the nature of this bond, it does not involve the active site of the proteinase, as bound serine-proteinase molecules retain the ability to react with the active-site-directed reagent [3H]Dip-F (di-isopropyl phosphorofluoridate). Our conclusion is that the ability to form covalent links is not essential for the inhibitory capacity of alpha 2M. It may, however, help to stabilize the complexes against dissociation or proteolysis.

Full text

PDF
701

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S., Nagai Y. Evidence for the presence of a latent form of collagenase in human rheumatoid synovial fluid. J Biochem. 1972 May;71(5):919–922. doi: 10.1093/oxfordjournals.jbchem.a129846. [DOI] [PubMed] [Google Scholar]
  2. Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baugh R. J., Travis J. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry. 1976 Feb 24;15(4):836–841. doi: 10.1021/bi00649a017. [DOI] [PubMed] [Google Scholar]
  5. Birkedal-Hansen H., Cobb C. M., Taylor R. E., Fullmer H. M. Activation of latent bovine gingival collagenase. Arch Oral Biol. 1975 Oct;20(10):681–685. doi: 10.1016/0003-9969(75)90137-5. [DOI] [PubMed] [Google Scholar]
  6. Brockway W. J., Castellino F. J. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys. 1972 Jul;151(1):194–199. doi: 10.1016/0003-9861(72)90488-2. [DOI] [PubMed] [Google Scholar]
  7. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  8. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  9. Dunn J. T., Spiro R. G. The alpha 2-macroglobulin of human plasma. I. Isolation and composition. J Biol Chem. 1967 Dec 10;242(23):5549–5555. [PubMed] [Google Scholar]
  10. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  11. Harpel P. C., Hayes M. B., Hugli T. E. Heat-induced fragmentation of human alpha 2-macroglobulin. J Biol Chem. 1979 Sep 10;254(17):8669–8678. [PubMed] [Google Scholar]
  12. Harpel P. C. Plasmin inhibitor interactions. The effectiveness of alpha2-plasmin inhibitor in the presence of alpha2-macroglobulin. J Exp Med. 1977 Oct 1;146(4):1033–1040. doi: 10.1084/jem.146.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harpel P. C., Rosenberg R. D. Alpha 2-macroglobulin and antithrombin-heparin cofactor: modulators of hemostatic and inflammatory reactions. Alpha 2-macroglobulin. Prog Hemost Thromb. 1976;3:145–189. [PubMed] [Google Scholar]
  14. Jones J. M., Creeth J. M., Kekwick R. A. Thio reduction of human 2 -macroglobulin. The subunit structure. Biochem J. 1972 Mar;127(1):187–197. doi: 10.1042/bj1270187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krebs G., Guinand S., Bréda C. Modèle d'interaction entre la trypsine et la alpha2-macroglobuline du sérum de Porc. C R Acad Sci Hebd Seances Acad Sci D. 1978 Apr 24;286(16):1219–1222. [PubMed] [Google Scholar]
  16. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  17. Nagasawa S., Han B. H., Sugihara H., Suzuki T. Studies on alpha 2-macroglobulin in bovine plasma. II. Interaction of alpha2-macroglobulin and trypsin. J Biochem. 1970 Jun;67(6):821–832. doi: 10.1093/oxfordjournals.jbchem.a129314. [DOI] [PubMed] [Google Scholar]
  18. Schroeder D. D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem. 1968 Jun 10;243(11):2943–2949. [PubMed] [Google Scholar]
  19. Swenson R. P., Howard J. B. Structural characterization of human alpha2-macroglobulin subunits. J Biol Chem. 1979 Jun 10;254(11):4452–4456. [PubMed] [Google Scholar]
  20. Travis J., Pannell R. Selective removal of albumin from plasma by affinity chromatography. Clin Chim Acta. 1973 Nov 23;49(1):49–52. doi: 10.1016/0009-8981(73)90341-0. [DOI] [PubMed] [Google Scholar]
  21. Wyckoff M., Rodbard D., Chrambach A. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate-containing buffers using multiphasic buffer systems: properties of the stack, valid Rf- measurement, and optimized procedure. Anal Biochem. 1977 Apr;78(2):459–482. doi: 10.1016/0003-2697(77)90107-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES