Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Apr 1;187(1):123–129. doi: 10.1042/bj1870123

Purification and properties of lung lectin. Rat lung and human lung beta-galactoside-binding proteins.

J T Powell
PMCID: PMC1162499  PMID: 7406857

Abstract

Lung is one of the organs of the rat with a particular abundance of haemagglutinating activity that is inhibited by beta-galactosides. This lectin activity can be attributed to a single protein that has been purified from rat lung; a similar protein has been purified from human lung. The molecular weights and subunit structures were estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the human lung lectin appeared to be composed to two identical subunits, mol.wt. 14500, whereas rat lung lectin was observed as both a dimer and a tetramer of one subunit type, mol.wt. 13500. Both lectins bind to disaccharides or oligosaccharides with terminal beta-linked galactose residues. The carbohydrate moiety may be free [lactose or D-galactopyranosyl-beta-(1 leads to 4)-thiogalactopyranoside], protein-bound (asialofetuin) or lipid-bound (cerebrosides). The molecular properties of the beta-galactoside-binding proteins of rat lung and human lung are closely similar to those of embryonic chick muscle lectin [Nowak, Kobiler, Roel & Barondes (1977) Proc. Natl. Acad. Sci. U.S.A. 73, 1383--1387] and calf heart lectin [De Waard, Hickman & Kornfeld (1976) J. Biol. Chem. 251, 7581--7587].

Full text

PDF
124

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Briles E. B., Gregory W., Fletcher P., Kornfeld S. Vertebrate lectins, Comparison of properties of beta-galactoside-binding lectins from tissues of calf and chicken. J Cell Biol. 1979 Jun;81(3):528–537. doi: 10.1083/jcb.81.3.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curatolo W., Yau A. O., Small D. M., Sears B. Lectin-induced agglutination of phospholipid/glycolipid vesicles. Biochemistry. 1978 Dec 26;17(26):5740–5744. doi: 10.1021/bi00619a022. [DOI] [PubMed] [Google Scholar]
  5. Den H., Malinzak D. A. Isolation and properties of beta-D-galactoside-specific lectin from chick embryo thigh muscle. J Biol Chem. 1977 Aug 10;252(15):5444–5448. [PubMed] [Google Scholar]
  6. Eisenbarth G. S., Ruffolo R. R., Jr, Walsh F. S., Nirenberg M. Lactose sensitive lectin of chick retina and spinal cord. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1246–1252. doi: 10.1016/0006-291x(78)91355-4. [DOI] [PubMed] [Google Scholar]
  7. Emerson W. A., Kornfeld S. Characterization of the oligosaccharide units of the bovine erythrocyte membrane glycoprotein. Biochemistry. 1976 Apr 20;15(8):1697–1703. doi: 10.1021/bi00653a017. [DOI] [PubMed] [Google Scholar]
  8. Gremo F., Kobiler D., Barondes S. H. Distribution of an endogenous lectin in the developing chick optic tectum. J Cell Biol. 1978 Nov;79(2 Pt 1):491–499. doi: 10.1083/jcb.79.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudgin R. L., Pricer W. E., Jr, Ashwell G., Stockert R. J., Morell A. G. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem. 1974 Sep 10;249(17):5536–5543. [PubMed] [Google Scholar]
  10. Inman J. K. Covalent linkage of functional groups, ligands, and proteins to polyacrylamide beads. Methods Enzymol. 1974;34:30–58. doi: 10.1016/s0076-6879(74)34006-2. [DOI] [PubMed] [Google Scholar]
  11. Kawasaki T., Ashwell G. Chemical and physical properties of an hepatic membrane protein that specifically binds asialoglycoproteins. J Biol Chem. 1976 Mar 10;251(5):1296–1302. [PubMed] [Google Scholar]
  12. Kawasaki T., Ashwell G. Isolation and characterization of an avian hepatic binding protein specific for N-acetylglucosamine-terminated glycoproteins. J Biol Chem. 1977 Sep 25;252(18):6536–6543. [PubMed] [Google Scholar]
  13. Kobiler D., Barondes S. H. Lectin activity from embryonic chick brain, heart, and liver: changes with development. Dev Biol. 1977 Oct 1;60(1):326–330. doi: 10.1016/0012-1606(77)90130-0. [DOI] [PubMed] [Google Scholar]
  14. Lanzillo J. J., Fanburg B. L. Membrane-bound angiotensin-converting enzyme from rat lung. J Biol Chem. 1974 Apr 10;249(7):2312–2318. [PubMed] [Google Scholar]
  15. Prieels J. P., Pizzo S. V., Glasgow L. R., Paulson J. C., Hill R. L. Hepatic receptor that specifically binds oligosaccharides containing fucosyl alpha1 leads to 3 N-acetylglucosamine linkages. Proc Natl Acad Sci U S A. 1978 May;75(5):2215–2219. doi: 10.1073/pnas.75.5.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. STEERS E., Jr, CRAVEN G. R., ANFINSEN C. B., BETHUNE J. L. EVIDENCE FOR NONIDENTICAL CHAINS IN THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2478–2484. [PubMed] [Google Scholar]
  17. Schmid K., Kaufmann H., Isemura S., Bauer F., Emura J., Motoyama T., Ishiguro M., Nanno S. Structure of 1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry. 1973 Jul 3;12(14):2711–2724. doi: 10.1021/bi00738a026. [DOI] [PubMed] [Google Scholar]
  18. Simpson D. L., Thorne D. R., Loh H. H. Developmentally regulated lectin in neonatal rat brain. Nature. 1977 Mar 24;266(5600):367–369. doi: 10.1038/266367a0. [DOI] [PubMed] [Google Scholar]
  19. Stahl P. D., Rodman J. S., Miller M. J., Schlesinger P. H. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1399–1403. doi: 10.1073/pnas.75.3.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanabe T., Pricer W. E., Jr, Ashwell G. Subcellular membrane topology and turnover of a rat hepatic binding protein specific for asialoglycoproteins. J Biol Chem. 1979 Feb 25;254(4):1038–1043. [PubMed] [Google Scholar]
  21. Teichberg V. I., Silman I., Beitsch D. D., Resheff G. A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1383–1387. doi: 10.1073/pnas.72.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. Whitehead P. H., Sammons H. G. A simple technique for the isolation of orosomucoid from normal and pathological sera. Biochim Biophys Acta. 1966 Jul 27;124(1):209–211. doi: 10.1016/0304-4165(66)90336-9. [DOI] [PubMed] [Google Scholar]
  24. de Waard A., Hickman S., Kornfeld S. Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem. 1976 Dec 10;251(23):7581–7587. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES