Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Feb 1;193(2):401–406. doi: 10.1042/bj1930401

Studies of pyruvate-water isotope exchange catalysed by erythrocytes and proteins.

R J Simpson, K M Brindle, F F Brown, I D Campbell, D L Foxall
PMCID: PMC1162619  PMID: 7305939

Abstract

Erythrocyte suspensions in buffer made with 2H2O catalyse the exchange of pyruvate protons. This process can be easly observed by spin-echo proton magnetic resonance. The dominant exchange process is shown to be due to the formation of Schiff-base links between pyruvate and amino groups of haemoglobin. Other proteins with free alpha-amino groups also catalyse the exchange. The pH*-dependence of the exchange rate due to hen-egg-white-lysozyme reflects the dissociation of the alpha-amino group.

Full text

PDF
404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya A. S., Manning J. M. Reactivity of the amino groups of carbonmonoxyhemoglobin S with glyceraldehyde. J Biol Chem. 1980 Feb 25;255(4):1406–1412. [PubMed] [Google Scholar]
  2. Arnone A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature. 1972 May 19;237(5351):146–149. doi: 10.1038/237146a0. [DOI] [PubMed] [Google Scholar]
  3. Brindle K. M., Brown F. F., Campbell I. D., Grathwohl C., Kuchel P. W. Application of spin-echo nuclear magnetic resonance to whole-cell systems. Membrane transport. Biochem J. 1979 Apr 15;180(1):37–44. doi: 10.1042/bj1800037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown F. F., Campbell I. D., Kuchel P. W., Rabenstein D. C. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 1977 Oct 1;82(1):12–16. doi: 10.1016/0014-5793(77)80875-2. [DOI] [PubMed] [Google Scholar]
  5. Bunn H. F., Gabbay K. H., Gallop P. M. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978 Apr 7;200(4337):21–27. doi: 10.1126/science.635569. [DOI] [PubMed] [Google Scholar]
  6. Campbell I. D., Dobson C. M. The application of high resolution nuclear magnetic resonance to biological systems. Methods Biochem Anal. 1979;25:1–133. doi: 10.1002/9780470110454.ch1. [DOI] [PubMed] [Google Scholar]
  7. Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freedman R. B., Radda G. K. The reaction of 2,4,6-trinitrobenzenesulphonic acid with amino acids, Peptides and proteins. Biochem J. 1968 Jul;108(3):383–391. doi: 10.1042/bj1080383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garner M. H., Bogardt R. A., Jr, Gurd F. R. Determination of the pK values for the alpha-amino groups of human hemoglobin. J Biol Chem. 1975 Jun 25;250(12):4398–4404. [PubMed] [Google Scholar]
  10. Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katz J., Rognstad R. Futile cycles in the metabolism of glucose. Curr Top Cell Regul. 1976;10:237–289. doi: 10.1016/b978-0-12-152810-2.50013-9. [DOI] [PubMed] [Google Scholar]
  12. Kosicki G. W. Oxaloacetate decarboxylase from cod. Catalysis of hydrogen-deuterium exchange in pyruvate. Biochemistry. 1968 Dec;7(12):4310–4314. doi: 10.1021/bi00852a024. [DOI] [PubMed] [Google Scholar]
  13. Meloche H. P., Monti C. T., Cleland W. W. Magnitude of the equilibrium isotope effect on carbon-tritium bond synthesis. Biochim Biophys Acta. 1977 Feb 9;480(2):517–519. doi: 10.1016/0005-2744(77)90047-x. [DOI] [PubMed] [Google Scholar]
  14. Nowak T., Mildvan A. S. Stereoselective interactions of phosphoenolpyruvate analogues with phosphoenolpyruvate-utilizing enzymes. J Biol Chem. 1970 Nov 25;245(22):6057–6064. [PubMed] [Google Scholar]
  15. ROSE I. A. Studies on the enolization of pyruvate by pyruvate kinase. J Biol Chem. 1960 Apr;235:1170–1177. [PubMed] [Google Scholar]
  16. Rognstad R. Pyruvate cycling involving possible oxaloacetate decarboxylase activity. Biochim Biophys Acta. 1979 Aug 22;586(2):242–249. doi: 10.1016/0304-4165(79)90096-5. [DOI] [PubMed] [Google Scholar]
  17. Rognstad R., Wals P. The metabolism of l-[3-3h]lactate by isolated hamster liver cells. Biochim Biophys Acta. 1976 Jun 23;437(1):16–21. doi: 10.1016/0304-4165(76)90343-3. [DOI] [PubMed] [Google Scholar]
  18. SHINODA T. THE APPARENT HIGH REACTIVITY OF SOME AMINO GROUPS OF NATIVE HEMOGLOBIN. Biochim Biophys Acta. 1965 Feb 15;97:382–384. doi: 10.1016/0304-4165(65)90117-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES