Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jan 15;194(1):71–77. doi: 10.1042/bj1940071

The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria.

M C Beatrice, D R Pfeiffer
PMCID: PMC1162718  PMID: 7305993

Abstract

The mechanism by which palmitoyl-CoA inhibits Ca2+ uptake in liver and heart mitochondria was examined. At a given concentration of palmitoyl-CoA, the extent of inhibition is inversely related to the concentration of the respiratory substrate succinate. Palmitoyl-CoA inhibition of uncoupler-stimulated respiration and respiration stimulated by ionophore-A23187-induced Ca2+ cycling is also relieved by high succinate concentrations. These effects of palmitoyl-CoA and succinate concentration are distinct from the increase in inner-membrane permeability, which can be produced by palmitoyl-CoA and Ca2+ [Beatrice, Palmer & Pfeiffer (1980) J. Biol. Chem. 255, 8663-8671]. The apparent K0.5 of the mitochondrial Ca2+ pump is not altered by palmitoyl-CoA. No or negligible effects of palmitoyl-CoA on the Ca2+-uptake rate are observed when ascorbate replaces succinate as an energy source. These findings, together with the known activity of palmitoyl-CoA as a competitive inhibitor of the dicarboxylate carrier [Morel, Lauquin, Lunardi, Duszynski & Vignais (1974) FEBS Lett. 39, 133-138], indicate that palmitoyl-CoA inhibits energy-linked Ca2+ transport by limiting the rate of electron transport through limitation of succinate entry into the mitochondria rather than by directly inhibiting the Ca2+ carrier.

Full text

PDF
71

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asimakis G. K., Sordahl L. A. Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria. Arch Biochem Biophys. 1977 Feb;179(1):200–210. doi: 10.1016/0003-9861(77)90104-7. [DOI] [PubMed] [Google Scholar]
  2. Barritt G. J. Inhibition by local anaesthetics of anion transport in isolated rat heart mitochondria. Biochem Pharmacol. 1979 Apr 1;28(7):1017–1021. doi: 10.1016/0006-2952(79)90297-1. [DOI] [PubMed] [Google Scholar]
  3. Beatrice M. C., Palmer J. W., Pfeiffer D. R. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J Biol Chem. 1980 Sep 25;255(18):8663–8671. [PubMed] [Google Scholar]
  4. Carafoli E. The calcium cycle of mitochondria. FEBS Lett. 1979 Aug 1;104(1):1–5. doi: 10.1016/0014-5793(79)81073-x. [DOI] [PubMed] [Google Scholar]
  5. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  6. Halperin M. L., Robinson B. H., Fritz I. B. Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria. Proc Natl Acad Sci U S A. 1972 Apr;69(4):1003–1007. doi: 10.1073/pnas.69.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris E. J. Mitochondrial ion movements with special reference to calcium ions and heart mitochondria. Biochem Soc Trans. 1979 Aug;7(4):770–775. doi: 10.1042/bst0070770. [DOI] [PubMed] [Google Scholar]
  8. Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris R. A., Farmer B., Ozawa T. Inhibition of the mitochondrial adenine nucleotide transport system by oleyl CoA. Arch Biochem Biophys. 1972 May;150(1):199–209. doi: 10.1016/0003-9861(72)90027-6. [DOI] [PubMed] [Google Scholar]
  10. Heaton G. M., Nicholls D. G. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J. 1976 Jun 15;156(3):635–646. doi: 10.1042/bj1560635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hutson S. M., Pfeiffer D. R., Lardy H. A. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem. 1976 Sep 10;251(17):5251–5258. [PubMed] [Google Scholar]
  12. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  13. Lehninger A. L., Reynafarje B., Vercesi A., Tew W. P. Transport and accumulation of calcium in mitochondria. Ann N Y Acad Sci. 1978 Apr 28;307:160–176. doi: 10.1111/j.1749-6632.1978.tb41941.x. [DOI] [PubMed] [Google Scholar]
  14. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morel F., Lauquin G., Lunardi J., Duszynski J., Vignais P. V. An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports. FEBS Lett. 1974 Feb 15;39(2):133–138. doi: 10.1016/0014-5793(74)80035-9. [DOI] [PubMed] [Google Scholar]
  16. Palmer J. W., Tandler B., Hoppel C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731–8739. [PubMed] [Google Scholar]
  17. Pfeiffer D. R., Hutson S. M., Kauffman R. F., Lardy H. A. Some effects of ionophore A23187 on energy utilization and the distribution of cations and anions in mitochondria. Biochemistry. 1976 Jun 15;15(12):2690–2697. doi: 10.1021/bi00657a032. [DOI] [PubMed] [Google Scholar]
  18. Pfeiffer D. R., Schmid P. C., Beatrice M. C., Schmid H. H. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function. J Biol Chem. 1979 Nov 25;254(22):11485–11494. [PubMed] [Google Scholar]
  19. Reed K. C., Bygrave F. L. A kinetic study of mitochondrial calcium transport. Eur J Biochem. 1975 Jul 15;55(3):497–504. doi: 10.1111/j.1432-1033.1975.tb02187.x. [DOI] [PubMed] [Google Scholar]
  20. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  21. Rydström J. Site-specific inhibitors of mitochondrial nicotinamide-nucleotide transhydrogenase. Eur J Biochem. 1972 Dec 18;31(3):496–504. doi: 10.1111/j.1432-1033.1972.tb02557.x. [DOI] [PubMed] [Google Scholar]
  22. Scarpa A., Brinley F. J., Jr, Dubyak G. Antipyrylazo III, a "middle range" Ca2+ metallochromic indicator. Biochemistry. 1978 Apr 18;17(8):1378–1386. doi: 10.1021/bi00601a004. [DOI] [PubMed] [Google Scholar]
  23. Shrago E., Shug A., Elson C., Spennetta T., Crosby C. Regulation of metabolic transport in rat and guinea pig liver mitochondria by long chain fatty acyl coenzyme A esters. J Biol Chem. 1974 Aug 25;249(16):5269–5274. [PubMed] [Google Scholar]
  24. Vaartjes W. J., Kemp A., Souverijn J. H.M., van den Bergh S. G. Inhibition by fatty acyl esters of adenine nucleotide translocation in rat-liver mitochondria. FEBS Lett. 1972 Jul 1;23(3):303–308. doi: 10.1016/0014-5793(72)80302-8. [DOI] [PubMed] [Google Scholar]
  25. Wolkowicz P. E., McMillin-Wood J. Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Effects of palmitoyl-coenzyme A and palmitoylcarnitine on calcium ion cycling and nicotinamide nucleotide reduction state. Biochem J. 1980 Jan 15;186(1):257–266. doi: 10.1042/bj1860257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolkowicz P. E., Wood J. M. Effect of malonyl-CoA on calcium uptake and pyridine nucleotide redox state in rat liver mitochondria. FEBS Lett. 1979 May 1;101(1):63–66. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES