Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 15;196(2):513–520. doi: 10.1042/bj1960513

Calcitonin binding and degradation by two cultured human breast cancer cell lines (MCF 7 and T 47D).

D M Findlay, V P Michelangeli, J M Moseley, T J Martin
PMCID: PMC1163024  PMID: 7316992

Abstract

Two human breast cancer cell lines (MCF 7 and T 47D) possess calcitonin-responsive adenylate cyclase systems. Suspended cells of both lines specifically bound 125I-labelled salmon calcitonin with mean dissociation constants of 1.7 nM (MCF 7) and 1.4 nM (T 47D); mean receptor numbers were 5300 and 24400 per cell respectively. Measurement of specific binding to MCF 7 cells was obscured by rapid and substantial degradation of the labelled hormone. Degradation of 125I-labelled salmon calcitonin: (i) was of high capacity; (ii) lacked the specificity displayed by 125I-labelled salmon calcitonin binding to the same cells; and (iii) was not related to binding since cell incubation supernatants retained full degrading activity. The degrading activity was inhibited by corticotropin (1-24)-tetracosapeptide, insulin and bacitracin. Inclusion of bacitracin in the incubation resulted in apparently fewer numbers of lower affinity receptors on MCF 7 cells, whereas these parameters were identical to T 47D cells incubated in the presence or absence of bacitracin. Eel [2-aminosuberic acid 1,7]-calcitonin was resistant to proteolysis in the presence of either cell line. Analysis of hormone-receptor interactions with calcitonin-responsive cells should take account of potent calcitonin-degrading activities in some cell lines.

Full text

PDF
520

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D., Sato G. Growth of a human mammary tumour cell line in a serum-free medium. Nature. 1979 Oct 4;281(5730):388–389. doi: 10.1038/281388a0. [DOI] [PubMed] [Google Scholar]
  2. Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
  3. Desbuquois B., Krug F., Cuatrecasas P. Inhibitors of glucagon inactivation. Effect on glucagon--receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranes. Biochim Biophys Acta. 1974 Mar 20;343(1):101–120. doi: 10.1016/0304-4165(74)90242-6. [DOI] [PubMed] [Google Scholar]
  4. Eilon G., Mundy G. R. Direct resorption of bone by human breast cancer cells in vitro. Nature. 1978 Dec 14;276(5689):726–728. doi: 10.1038/276726a0. [DOI] [PubMed] [Google Scholar]
  5. Eisman J. A., Martin T. J., MacIntyre I., Moseley J. M. 1,25-dihydroxyvitamin-D-receptor in breast cancer cells. Lancet. 1979 Dec 22;2(8156-8157):1335–1336. doi: 10.1016/s0140-6736(79)92816-2. [DOI] [PubMed] [Google Scholar]
  6. Findlay D. M., Michelangeli V. P., Eisman J. A., Frampton R. J., Moseley J. M., MacIntyre I., Whitehead R., Martin T. J. Calcitonin and 1,25-dihydroxyvitamin D3 receptors in human breast cancer cell lines. Cancer Res. 1980 Dec;40(12):4764–4767. [PubMed] [Google Scholar]
  7. Findlay D. M., deLuise M., Michelangeli V. P., Ellison M., Martin T. J. Properties of a calcitonin receptor and adenylate cyclase in BEN cells, a human cancer cell line. Cancer Res. 1980 Apr;40(4):1311–1317. [PubMed] [Google Scholar]
  8. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  9. Horwitz K. B., Zava D. T., Thilagar A. K., Jensen E. M., McGuire W. L. Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res. 1978 Aug;38(8):2434–2437. [PubMed] [Google Scholar]
  10. Hunt N. H., Ellison M., Underwood J. C., Martin T. J. Calcitonin-responsive adenylate cyclase in a calcitonin-producing human cancer cell line. Br J Cancer. 1977 Jun;35(6):777–784. doi: 10.1038/bjc.1977.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt N. H., Martin T. J., Michelangeli V. P., Eisman J. A. Effect of guanyl nucleotides on parathyroid hormone-responsive adenylate cyclase in chick kidney. J Endocrinol. 1976 Jun;69(3):401–412. [PubMed] [Google Scholar]
  12. Loreau N., Lajotte C., Wahbe F., Ardaillou R. Effects of guanyl nucleotides on calcitonin-sensitive adenylate cyclase and calcitonin binding in rat renal cortex. J Endocrinol. 1978 Mar;76(3):533–545. doi: 10.1677/joe.0.0760533. [DOI] [PubMed] [Google Scholar]
  13. Maier R., Kamber B., Riniker B., Rittel W. Analogues of human calcitonin. II. Influence of modifications in amino acid positions 1, 8 and 22 on hypocalcemic activity in the rat. Horm Metab Res. 1975 Nov;7(6):511–514. doi: 10.1055/s-0028-1093715. [DOI] [PubMed] [Google Scholar]
  14. Martin T. J., Findlay D. M., MacIntyre I., Eisman J. A., Michelangeli V. P., Moseley J. M., Partridge N. C. Calcitonin receptors in a cloned human breast cancer cell line (MCF 7). Biochem Biophys Res Commun. 1980 Sep 16;96(1):150–156. doi: 10.1016/0006-291x(80)91193-6. [DOI] [PubMed] [Google Scholar]
  15. Marx S. J., Fedak S. A., Aurbach G. D. Preparation and characterization of a hormone-responsive renal plasma membrane fraction. J Biol Chem. 1972 Nov 10;247(21):6913–6918. [PubMed] [Google Scholar]
  16. Marx S. J., Woodward C. J., Aurbach G. D. Calcitonin receptors of kidney and bone. Science. 1972 Dec 1;178(4064):999–1001. doi: 10.1126/science.178.4064.999. [DOI] [PubMed] [Google Scholar]
  17. Marx S. J., Woodward C., Aurbach G. D., Glossmann H., Keutmann H. T. Renal receptors for calcitonin. Binding and degradation of hormone. J Biol Chem. 1973 Jul 10;248(13):4797–4802. [PubMed] [Google Scholar]
  18. Moran J., Hunziker W., Fischer J. A. Calcitonin and calcium ionophores: cyclic AMP responses in cells of a human lymphoid line. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3984–3988. doi: 10.1073/pnas.75.8.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Osborne C. K., Hamilton B., Titus G., Livingston R. B. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res. 1980 Jul;40(7):2361–2366. [PubMed] [Google Scholar]
  20. Osborne C. K., Monaco M. E., Lippman M. E., Kahn C. R. Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long-term tissue culture. Cancer Res. 1978 Jan;38(1):94–102. [PubMed] [Google Scholar]
  21. Shafie S., Brooks S. C. Effect of prolactin on growth and the estrogen receptor level of human breast cancer cells (MCF-7). Cancer Res. 1977 Mar;37(3):792–799. [PubMed] [Google Scholar]
  22. Shiu R. P. Processing of prolactin by human breast cancer cells in long term tissue culture. J Biol Chem. 1980 May 10;255(9):4278–4281. [PubMed] [Google Scholar]
  23. Tashjian A. H., Jr, Wright D. R., Ivey J. L., Pont A. Calcitonin binding sites in bone: relationships to biological response and "escape". Recent Prog Horm Res. 1978;34:285–334. doi: 10.1016/b978-0-12-571134-0.50012-0. [DOI] [PubMed] [Google Scholar]
  24. Tonelli Q. J., Sorof S. Epidermal growth factor requirement for development of cultured mammary gland. Nature. 1980 May 22;285(5762):250–252. doi: 10.1038/285250a0. [DOI] [PubMed] [Google Scholar]
  25. Yamauchi H., Shiraki M., Otani M., Matsuo M., Orimo H. Stability of [Asu1,7]-eel calcitonin and eel calcitonin in vitro and in vivo. Endocrinol Jpn. 1977 Jun;24(3):281–285. doi: 10.1507/endocrj1954.24.281. [DOI] [PubMed] [Google Scholar]
  26. Yang J., Richards J., Guzman R., Imagawa W., Nandi S. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2088–2092. doi: 10.1073/pnas.77.4.2088. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES