Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jul 15;198(1):159–166. doi: 10.1042/bj1980159

Possible role of lipoprotein lipase in the regulation of endogenous triacylglycerols in the rat heart.

W K Palmer, R A Caruso, L B Oscai
PMCID: PMC1163222  PMID: 6173039

Abstract

1. Adrenaline has a biphasic effect on intracellular lipoprotein lipase activity and on endogenous triacylglycerol content in heparin-perfused heart. 2. A high concentration of adrenaline (1 microM in the perfusion buffer) activated endogenous lipoprotein lipase activity and, at the same time, decreased intracellular triacylglycerol stores. 3. In contrast, a low concentration (0.005 microM-adrenaline) inhibited intracellular lipoprotein lipase activity. Under these conditions, cardiac triacylglycerol content was elevated above control values. 4. Perfusing the heart with high and low concentrations of 3-isobutyl-1-methylxanthine elicited a biphasic effect on endogenous lipoprotein lipase activity and triacylglycerol content similar to that seen with adrenaline treatment. 5. The effect of adrenaline on intracellular lipoprotein lipase activity appears to be mediated by cyclic AMP through protein kinase. 6. A possible role for intracellular lipoprotein lipase in the regulation of endogenous triacylglycerol in rat heart is proposed.

Full text

PDF
166

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A., Bechtel P. J., Krebs E. G. Preparation of homogeneous cyclic AMP-dependent protein kinase(s) and its subunits from rabbit skeletal muscle. Methods Enzymol. 1974;38:299–308. doi: 10.1016/0076-6879(74)38046-9. [DOI] [PubMed] [Google Scholar]
  2. Beavo J. A., Rogers N. L., Crofford O. B., Hardman J. G., Sutherland E. W., Newman E. V. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol. 1970 Nov;6(6):597–603. [PubMed] [Google Scholar]
  3. Borensztajn J., Samols D. R., Rubenstein A. H. Effects of insulin on lipoprotein lipase activity in the rat heart and adipose tissue. Am J Physiol. 1972 Dec;223(6):1271–1275. doi: 10.1152/ajplegacy.1972.223.6.1271. [DOI] [PubMed] [Google Scholar]
  4. Challoner D. R., Steinberg D. Oxidative metabolism of myocardium as influenced by fatty acids and epinephrine. Am J Physiol. 1966 Oct;211(4):97–902. doi: 10.1152/ajplegacy.1966.211.4.897. [DOI] [PubMed] [Google Scholar]
  5. Crass M. F., 3rd Heart triglyceride and glycogen metabolism: effects of catecholamines, dibutyryl cyclic AMP, theophylline, and fatty acids. Recent Adv Stud Cardiac Struct Metab. 1973;3:275–290. [PubMed] [Google Scholar]
  6. Crass M. F., 3rd, Shipp J. C., Pieper G. M. Effects of catecholamines on myocardial endogenous substrates and contractility. Am J Physiol. 1975 Feb;228(2):618–627. doi: 10.1152/ajplegacy.1975.228.2.618. [DOI] [PubMed] [Google Scholar]
  7. Fletcher M. J. A colorimetric method for estimating serum triglycerides. Clin Chim Acta. 1968 Nov;22(3):393–397. doi: 10.1016/0009-8981(68)90041-7. [DOI] [PubMed] [Google Scholar]
  8. Gartner S. L., Vahouny G. V. Effects of epinephrine and cyclic 3',5'-AMP on perfused rat hearts. Am J Physiol. 1972 May;222(5):1121–1124. doi: 10.1152/ajplegacy.1972.222.5.1121. [DOI] [PubMed] [Google Scholar]
  9. Hahn P. F. ABOLISHMENT OF ALIMENTARY LIPEMIA FOLLOWING INJECTION OF HEPARIN. Science. 1943 Jul 2;98(2531):19–20. doi: 10.1126/science.98.2531.19. [DOI] [PubMed] [Google Scholar]
  10. KORN E. D. Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem. 1955 Jul;215(1):1–14. [PubMed] [Google Scholar]
  11. KORN E. D. Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil. J Biol Chem. 1955 Jul;215(1):15–26. [PubMed] [Google Scholar]
  12. Kotlar T. J., Borensztajn J. Oscillatory changes in muscle lipoprotein lipase activity of fed and starved rats. Am J Physiol. 1977 Oct;233(4):E316–E319. doi: 10.1152/ajpendo.1977.233.4.E316. [DOI] [PubMed] [Google Scholar]
  13. Kreisberg R. A. Effect of epinephrine on myocardial triglyceride and free fatty acid utilization. Am J Physiol. 1966 Feb;210(2):385–389. doi: 10.1152/ajplegacy.1966.210.2.385. [DOI] [PubMed] [Google Scholar]
  14. Lech J. J., Jesmok G. J., Calvert D. N. Effects of drugs and hormones on lipolysis in heart. Fed Proc. 1977 Jun;36(7):2000–2008. [PubMed] [Google Scholar]
  15. Lukens T. W., Borensztajn J. Effects of C apoproteins on the activity of endothelium-bound lipoprotein lipase. Biochem J. 1978 Dec 1;175(3):1143–1146. doi: 10.1042/bj1751143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oscai L. B. Role of lipoprotein lipase in regulating endogenous triacylglycerols in rat heart. Biochem Biophys Res Commun. 1979 Nov 14;91(1):227–232. doi: 10.1016/0006-291x(79)90607-7. [DOI] [PubMed] [Google Scholar]
  17. TROUT D. L., ESTES E. H., Jr, FRIEDBERG S. J. Titration of free fatty acids of plasma: a study of current methods and a new modification. J Lipid Res. 1960 Apr;1:199–202. [PubMed] [Google Scholar]
  18. WILLIAMSON J. R. METABOLIC EFFECTS OF EPINEPHRINE IN THE ISOLATED, PERFUSED RAT HEART. I. DISSOCIATION OF THE GLYCOGENOLYTIC FROM THE METABOLIC STIMULATORY EFFECT. J Biol Chem. 1964 Sep;239:2721–2729. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES