Abstract
Methods using conventional Fourier transform 1H n.m.r. spectroscopy at 250 MHz for the determination of the overall deuteration levels of cells cultured in media containing 2H2O or deuterated carbon sources are described. These were developed for Escherichia coli as a model, and extended to Neurospora crassa hyphae and mouse myeloma cells P815. The results were investigated by 1H n.m.r. and neutron scattering measurements on deuterated proteins that were obtained from E. coli. It is concluded that 1H n.m.r. is able to observe the soluble proteins of E. coli in certain cases, that deuteration levels can be determined by 1H n.m.r. for small quantities of proteins in their native state, and that glycerol is a more efficient carbon source than glucose for the deuteration of E. coli proteins.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai K., Clark B. F., Duffy L., Jones M. D., Kaziro Y., Laursen R. A., L'Italien J., Miller D. L., Nagarkatti S., Nakamura S. Primary structure of elongation factor Tu from Escherichia coli. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1326–1330. doi: 10.1073/pnas.77.3.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. R. Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance. Biochim Biophys Acta. 1979 Oct 19;557(1):135–148. doi: 10.1016/0005-2736(79)90096-8. [DOI] [PubMed] [Google Scholar]
- Campbell I. D., Dobson C. M. The application of high resolution nuclear magnetic resonance to biological systems. Methods Biochem Anal. 1979;25:1–133. doi: 10.1002/9780470110454.ch1. [DOI] [PubMed] [Google Scholar]
- Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
- Davies D. B., Danyluk S. S. Nuclear magnetic resonance studies of 5'-ribo- and deoxyribonucleotide structures in solution. Biochemistry. 1974 Oct 8;13(21):4417–4434. doi: 10.1021/bi00718a027. [DOI] [PubMed] [Google Scholar]
- Fayat G., Blanquet S., Dessen P., Batelier G., Waller J. P. The molecular weight and subunit composition of phenylalanyl-tRNA synthetase from Escherichia coli K-12. Biochimie. 1974;56(1):35–41. doi: 10.1016/s0300-9084(74)80353-6. [DOI] [PubMed] [Google Scholar]
- Feeney J., Roberts G. C., Birdsall B., Griffiths D. V., King R. W., Scudder P., Burgen A. 1H nuclear magnetic resonance studies of the tyrosine residues of selectively deuterated Lactobacillus casei dihydrofolate reductase. Proc R Soc Lond B Biol Sci. 1977 Mar 18;196(1124):267–290. doi: 10.1098/rspb.1977.0041. [DOI] [PubMed] [Google Scholar]
- Kneale G. G., Baldwin J. P., Bradbury E. M. Neutron scattering studies of biological macromolecules in solution. Q Rev Biophys. 1977 Nov;10(4):485–527. doi: 10.1017/s0033583500003206. [DOI] [PubMed] [Google Scholar]
- Koch M. H., Stuhrmann H. B. Neutron-scattering studies of ribosomes. Methods Enzymol. 1979;59:670–706. doi: 10.1016/0076-6879(79)59121-6. [DOI] [PubMed] [Google Scholar]
- Moore P. B. A simple technique for estimating deuterium incorporation levels in macromolecules. Anal Biochem. 1977 Sep;82(1):101–108. doi: 10.1016/0003-2697(77)90138-5. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Engelman D. M., Schoenborn B. P. A neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1975 Jan 5;91(1):101–120. doi: 10.1016/0022-2836(75)90374-5. [DOI] [PubMed] [Google Scholar]
- Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
- Schimmel P. R., Redfield A. G. Transfer RNA in solution: selected topics. Annu Rev Biophys Bioeng. 1980;9:181–221. doi: 10.1146/annurev.bb.09.060180.001145. [DOI] [PubMed] [Google Scholar]
- Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
- Seelig A., Seelig J. Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. Biochim Biophys Acta. 1975 Sep 16;406(1):1–5. doi: 10.1016/0005-2736(75)90037-1. [DOI] [PubMed] [Google Scholar]
- Spillmann S., Nierhaus K. H. The ribosomal protein L24 of Escherichia coli is an assembly protein. J Biol Chem. 1978 Oct 10;253(19):7047–7050. [PubMed] [Google Scholar]
- Weiss H., von Jagow G., Klingenberg M., Bücher T. Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem. 1970 May 1;14(1):75–82. doi: 10.1111/j.1432-1033.1970.tb00263.x. [DOI] [PubMed] [Google Scholar]
- Welti D., Rees D. A., Welsh E. J. Solution conformation of glycosaminoglycans: assignment of the 300-MHz 1H-magnetic resonance spectra of chondroitin 4-sulphate, chondroitin 6-sulphate and hyaluronate, and investigation of an alkali-induced conformation change. Eur J Biochem. 1979 Mar;94(2):505–514. doi: 10.1111/j.1432-1033.1979.tb12919.x. [DOI] [PubMed] [Google Scholar]
- Wittinghofer A., Leberman R. Elongation factor T from Bacillus stearothermophilus and Escherichia coli. Purification and some properties of EF-Tu and EF-Ts from Bacillus stearothermophilus. Eur J Biochem. 1976 Feb 16;62(2):373–382. doi: 10.1111/j.1432-1033.1976.tb10169.x. [DOI] [PubMed] [Google Scholar]
- Zamyatnin A. A. Protein volume in solution. Prog Biophys Mol Biol. 1972;24:107–123. doi: 10.1016/0079-6107(72)90005-3. [DOI] [PubMed] [Google Scholar]