Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Oct 1;199(1):273–276. doi: 10.1042/bj1990273

The stereochemical course of phosphoryl transfer catalysed by polynucleotide kinase (bacteriophage-T4-infected Escherichia coli B).

R L Jarvest, G Lowe
PMCID: PMC1163364  PMID: 6279097

Abstract

Polynucleotide kinase (bacteriophage-T4-infected Escherichia coli B) catalyses the transfer of the [gamma-16O,17O,18O]phosphoryl group from 5'[gamma(S)-16O,17O,18O]ATP to 3'-AMP with inversion of configuration at the phosphorus atom. The simplest interpretation of this observation is that the [gamma-16O,17O,18O]phosphoryl group is transferred directly from ATP to the co-substrate by an 'in-line' mechanism.

Full text

PDF
275

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bridger W. A., Millen W. A., Boyer P. D. Substrate synergism and phosphoenzyme formation in catalysis by succinyl coenzyme A synthetase. Biochemistry. 1968 Oct;7(10):3608–3616. doi: 10.1021/bi00850a038. [DOI] [PubMed] [Google Scholar]
  2. Kleppe K., Lillehaug J. R. Polynucleotide kinase. Adv Enzymol Relat Areas Mol Biol. 1979;48:245–275. doi: 10.1002/9780470122938.ch5. [DOI] [PubMed] [Google Scholar]
  3. Knowles J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. doi: 10.1146/annurev.bi.49.070180.004305. [DOI] [PubMed] [Google Scholar]
  4. Lillehaug J. R., Kleppe K. Kinetics and specificity of T4 polynucleotide kinase. Biochemistry. 1975 Mar 25;14(6):1221–1225. doi: 10.1021/bi00677a020. [DOI] [PubMed] [Google Scholar]
  5. Lillehaug J. R., Kleppe R. K., Kleppe K. Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase. Biochemistry. 1976 May 4;15(9):1858–1865. doi: 10.1021/bi00654a011. [DOI] [PubMed] [Google Scholar]
  6. Lowe G., Potter B. V. The stereochemical course of yeast hexokinase-catalysed phosphoryl transfer by using adenosine 5'[gamma(S)-16O,17O,18O]triphosphate as substrate. Biochem J. 1981 Oct 1;199(1):227–233. doi: 10.1042/bj1990227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  9. Murray K. Nucleotide sequence analysis with polynucleotide kinase and nucleotide "mapping" methods. 5'-Terminal sequences of deoxyribonucleic acid from bacteriophages lambda and 424. Biochem J. 1973 Mar;131(3):569–582. doi: 10.1042/bj1310569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Southern E. M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970 Aug 22;227(5260):794–798. doi: 10.1038/227794a0. [DOI] [PubMed] [Google Scholar]
  12. Székely M., Sanger F. Use of polynucleotide kinase in fingerprinting non-radioactive nucleic acids. J Mol Biol. 1969 Aug 14;43(3):607–617. doi: 10.1016/0022-2836(69)90362-3. [DOI] [PubMed] [Google Scholar]
  13. Takanami M. Analysis of the 5'-terminal nucleotide sequences of ribonucleic acids 1. the 5'-termini of Excherichia coli ribosomal RNA. J Mol Biol. 1967 Jan 28;23(2):135–148. doi: 10.1016/s0022-2836(67)80022-6. [DOI] [PubMed] [Google Scholar]
  14. van de Sande J. H., Kleppe K., Khorana H. G. Reversal of bacteriophage T4 induced polynucleotide kinase action. Biochemistry. 1973 Dec 4;12(25):5050–5055. doi: 10.1021/bi00749a004. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES