Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Oct 15;200(1):99–107. doi: 10.1042/bj2000099

Transport of Ca2+ and Na+ across the chromaffin-granule membrane.

J H Phillips
PMCID: PMC1163507  PMID: 7332540

Abstract

Bovine chromaffin-granule ghosts accumulate 45Ca2+ in a temperature- and osmotic-shock-sensitive process; the uptake is saturable, with Km 38 microM and Vmax. 28 nmol/min per mg at 37 degrees C. Entry occurs by exchange with Ca2+ bound to the inner surface of the membrane. It is inhibited non-competitively by Na+, La3+ and Ruthenium Red (Ki 10.7 mM, 7 microM and 2 microM respectively), and competitively by Mg2+ (ki 0.9 mM). Uptake was not stimulated by ATP. Na+ induces Ca2+ efflux; Ca2+ can re-enter the ghosts by a process of Ca2+/Na+ exchange. La3+ inhibits Ca2+ efflux during Ca2+-exchange, and Ca2+ efflux induced by Na+, suggesting that Ca2+ uptake and efflux, and Ca2+/Na+ exchange, are catalysed by the same protein. Na+ enters ghosts during CA2+ efflux, but the kinetics of its entry are not exactly similar to the kinetics of Ca2+ efflux. Initially 1-2 Na+ enter per Ca2+ lost, but at equilibrium 3-4 Na+ have replaced each Ca2+. There is no evidence that either Ca2+ uptake or efflux by Ca2+/Na+ exchange is electrogenic, suggesting that the stoichiometry of exchange is Ca2+/2Na+. This exchange reaction may have a role in depleting cytoplasmic Ca2+ after depolarization-induced Ca2+ entry through the adrenal medulla plasma membrane; there is some evidence that there may be an additional entry mechanism for Na+ across the granule membrane.

Full text

PDF
101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apps D. K., Pryde J. G., Sutton R., Phillips J. H. Inhibition of adenosine triphosphatase, 5-hydroxytryptamine transport and proton-translocation activities of resealed chromaffin-granule 'ghosts'. Biochem J. 1980 Aug 15;190(2):273–282. doi: 10.1042/bj1900273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOROWITZ J. L., FUWA K., WEINER N. DISTRIBUTION OF METALS AND CATECHOLAMINES IN BOVINE ADRENAL MEDULLA SUB-CELLULAR FRACTIONS. Nature. 1965 Jan 2;205:42–43. doi: 10.1038/205042a0. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaustein M. P. The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Fed Proc. 1976 Dec;35(14):2574–2578. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E. The calcium cycle of mitochondria. FEBS Lett. 1979 Aug 1;104(1):1–5. doi: 10.1016/0014-5793(79)81073-x. [DOI] [PubMed] [Google Scholar]
  7. Caroni P., Reinlib L., Carafoli E. Charge movements during the Na+-Ca2+ exchange in heart sarcolemmal vesicles. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6354–6358. doi: 10.1073/pnas.77.11.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
  10. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  11. Fiskum G., Lehninger A. L. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem. 1979 Jul 25;254(14):6236–6239. [PubMed] [Google Scholar]
  12. Johnson R. G., Scarpa A. Ion permeability of isolated chromaffin granules. J Gen Physiol. 1976 Dec;68(6):601–631. doi: 10.1085/jgp.68.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kostron H., Winkler H., Geissler D., König P. Uptake of calcium by chromaffin granules in vitro. J Neurochem. 1977 Mar;28(3):487–493. doi: 10.1111/j.1471-4159.1977.tb10419.x. [DOI] [PubMed] [Google Scholar]
  14. Larsen F. L., Vincenzi F. F. Calcium transport across the plasma membrane: stimulation by calmodulin. Science. 1979 Apr 20;204(4390):306–309. doi: 10.1126/science.155309. [DOI] [PubMed] [Google Scholar]
  15. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  16. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macintyre J. D., Green J. W. Stimulation of calcium transport in inside-out vesicles of human erythrocyte membranes by a soluble cytoplasmic activator. Biochim Biophys Acta. 1978 Jul 4;510(2):373–377. doi: 10.1016/0005-2736(78)90037-8. [DOI] [PubMed] [Google Scholar]
  18. Mason T. L., Poyton R. O., Wharton D. C., Schatz G. Cytochrome c oxidase from bakers' yeast. I. Isolation and properties. J Biol Chem. 1973 Feb 25;248(4):1346–1354. [PubMed] [Google Scholar]
  19. Michaelson D. M., Ophir I., Angel I. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J Neurochem. 1980 Jul;35(1):116–124. doi: 10.1111/j.1471-4159.1980.tb12496.x. [DOI] [PubMed] [Google Scholar]
  20. Morris S. J., Schovanka I. Some physical properties of adrenal medulla chromaffin granules isolated by a new continuous iso-osmotic density gradient method. Biochim Biophys Acta. 1977 Jan 4;464(1):53–64. doi: 10.1016/0005-2736(77)90370-4. [DOI] [PubMed] [Google Scholar]
  21. Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
  22. Nicholls D. G., Scott I. D. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J. 1980 Mar 15;186(3):833–839. doi: 10.1042/bj1860833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nordmann J. J., Chevallier J. The role of microvesicles in buffering [Ca2+]i in the neurohypophysis. Nature. 1980 Sep 4;287(5777):54–56. doi: 10.1038/287054a0. [DOI] [PubMed] [Google Scholar]
  24. Panfili E., Crompton M., Sottocasa G. L. Immunochemical evidence of the independence of the Ca2+/Na2+ antiporter and electrophoretic Ca2+ uniporter in heart mitochondria. FEBS Lett. 1981 Jan 12;123(1):30–32. doi: 10.1016/0014-5793(81)80012-9. [DOI] [PubMed] [Google Scholar]
  25. Philipson K. D., Nishimoto A. Y. Na+-Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J Biol Chem. 1980 Jul 25;255(14):6880–6882. [PubMed] [Google Scholar]
  26. Phillips J. H., Allison V. P. Proton translocation of the bovine chromaffin-granule membrane. Biochem J. 1978 Mar 15;170(3):661–672. doi: 10.1042/bj1700661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Phillips J. H., Allison Y. P., Morris S. J. The distribution of calcium, magnesium, copper and iron in the bovine adrenal medulla. Neuroscience. 1977;2(1):147–152. doi: 10.1016/0306-4522(77)90075-6. [DOI] [PubMed] [Google Scholar]
  28. Phillips J. H. Passive ion permeability of the chromaffin-granule membrane. Biochem J. 1977 Nov 15;168(2):289–297. doi: 10.1042/bj1680289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Phillips J. H. Transport of catecholamines by resealed chromaffin-grnaule "ghosts". Biochem J. 1974 Nov;144(2):311–318. doi: 10.1042/bj1440311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pitts B. J. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J Biol Chem. 1979 Jul 25;254(14):6232–6235. [PubMed] [Google Scholar]
  31. Pletscher A., Da Prada M., Berneis K. H., Steffen H., Lütold B., Weder H. G. Molecular organization of amine storage organelles of blood platelets and adrenal medulla. Adv Cytopharmacol. 1974;2:257–264. [PubMed] [Google Scholar]
  32. Potter L. T. A radiometric microassay of acetylcholinesterase. J Pharmacol Exp Ther. 1967 Jun;156(3):500–506. [PubMed] [Google Scholar]
  33. Rahamimoff H., Abramovitz E. Ca transport and ATPase activity of synaptosomal vesicles from rat brain. FEBS Lett. 1978 Aug 15;92(2):163–167. doi: 10.1016/0014-5793(78)80745-5. [DOI] [PubMed] [Google Scholar]
  34. Reed K. C., Bygrave F. L. Methodology for in vitro studies of Ca-2+ transport. Anal Biochem. 1975 Jul;67(1):44–54. doi: 10.1016/0003-2697(75)90270-5. [DOI] [PubMed] [Google Scholar]
  35. Reeves J. P., Sutko J. L. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science. 1980 Jun 27;208(4451):1461–1464. doi: 10.1126/science.7384788. [DOI] [PubMed] [Google Scholar]
  36. Scott I. D., Akerman K. E., Nicholls D. G. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential. Biochem J. 1980 Dec 15;192(3):873–880. doi: 10.1042/bj1920873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sen R., Sharp R. R., Domino L. E., Domino E. F. Composition of the aqueous phase of chromaffin granules. Biochim Biophys Acta. 1979 Sep 20;587(1):75–88. doi: 10.1016/0304-4165(79)90222-8. [DOI] [PubMed] [Google Scholar]
  38. Serck-Hanssen G., Christiansen E. N. Uptake of calcium in chromaffin granules of bovine adrenal medulla stimulated in vitro. Biochim Biophys Acta. 1973 May 11;307(2):404–414. doi: 10.1016/0005-2736(73)90106-5. [DOI] [PubMed] [Google Scholar]
  39. Sharp R. R., Richards E. P. Molecular mobilities of soluble components in the aqueous phase of chromaffin granules. Biochim Biophys Acta. 1977 Mar 29;497(1):260–271. doi: 10.1016/0304-4165(77)90159-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES