Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Dec 15;200(3):539–546. doi: 10.1042/bj2000539

Steady-state H+/O stoichiometry of liver mitochondria.

M K Al-Shawi, M D Brand
PMCID: PMC1163575  PMID: 6282251

Abstract

We have measured the H+/O stoichiometry of rat liver mitochondria respiring in a steady-state, using a novel method. This involves measuring the initial rate of H+ back-flow into mitochondria after respiratory inhibition, with the assumption that this is equal to the steady-state H+-ejection rate. Division by the steady-state O2-consumption rate yields the H+/O ratio. The H+/O values obtained were: 8.3 +/- 1.0 (mean +/- S.E.M.) for 3-hydroxybutyrate: 8.2 +/- 0.7 for glutamate plus malate; 6.0 +/- 0.2 for succinate; 4.1 +/- 0.3 for ascorbate/tetramethylphenylenediamine and 3.0 +/- 0.1 for ascorbate/ferrocyanide. These values correspond to H+/O stoichiometries for electron flow to oxygen from NAD+-linked substrates, succinate and cytochrome c of 8, 6 and 2 (charge/O ratio = 4) respectively.

Full text

PDF
542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre A., Galiazzo F., Lehninger A. L. On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain. J Biol Chem. 1980 Nov 25;255(22):10721–10730. [PubMed] [Google Scholar]
  2. Alexandre A., Lehninger A. L. Stoichiometry of H+ translocation coupled to electron flow from succinate to cytochrome c in mitochondria. J Biol Chem. 1979 Nov 25;254(22):11555–11560. [PubMed] [Google Scholar]
  3. Alexandre A., Reynafarje B., Lehninger A. L. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5296–5300. doi: 10.1073/pnas.75.11.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Azzone G. F., Pozzan T., Di Virgilio F. H+/site, charge/site, and ATP/site ratios at coupling site III in mitochondrial electron transport. J Biol Chem. 1979 Oct 25;254(20):10206–10212. [PubMed] [Google Scholar]
  5. Azzone G. F., Pozzan T., Massari S. Proton electrochemical gradient and phosphate potential in mitochondria. Biochim Biophys Acta. 1978 Feb 9;501(2):307–316. doi: 10.1016/0005-2728(78)90036-1. [DOI] [PubMed] [Google Scholar]
  6. Brand M. D., Harper W. G., Nicholls D. G., Ingledew W. J. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain. FEBS Lett. 1978 Nov 1;95(1):125–129. doi: 10.1016/0014-5793(78)80066-0. [DOI] [PubMed] [Google Scholar]
  7. Brand M. D., Reynafarje B., Lehninger A. L. Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique. J Biol Chem. 1976 Sep 25;251(18):5670–5679. [PubMed] [Google Scholar]
  8. Brand M. D., Reynafarje B., Lehninger A. L. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc Natl Acad Sci U S A. 1976 Feb;73(2):437–441. doi: 10.1073/pnas.73.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brand M. D. Stoicheiometry of charge and proton translocation in mitochondria: steady-state measurement of charge/O and P/O ratios. Biochem Soc Trans. 1979 Oct;7(5):874–880. doi: 10.1042/bst0070874. [DOI] [PubMed] [Google Scholar]
  10. Brand M. D. The stoicheiometric relationships between electron transport, proton translocation and adenosine triphosphate synthesis and hydrolysis in mitochondria. Biochem Soc Trans. 1977;5(5):1615–1620. doi: 10.1042/bst0051615. [DOI] [PubMed] [Google Scholar]
  11. HAAS D. PHOSPHORYLATION COUPLED TO THE OXIDATION OF NADH BY FUMARATE IN DIGITONIN FRAGMENTS OF BEEF-HEART MITOCHONDRIA. Biochim Biophys Acta. 1964 Dec 23;92:433–439. doi: 10.1016/0926-6569(64)90002-1. [DOI] [PubMed] [Google Scholar]
  12. JACOBS E. E., SANADI D. R. Phosphorylation coupled to electron transport mediated by high potential electron carriers. Biochim Biophys Acta. 1960 Feb 12;38:12–34. doi: 10.1016/0006-3002(60)91192-6. [DOI] [PubMed] [Google Scholar]
  13. Krab K., Wikström M. On the stoichiometry and thermodynamics of proton-pumping cytochrome c oxidase in mitochondria. Biochim Biophys Acta. 1979 Oct 10;548(1):1–15. doi: 10.1016/0005-2728(79)90182-8. [DOI] [PubMed] [Google Scholar]
  14. Mitchell P. A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation. FEBS Lett. 1977;78(1):1–20. doi: 10.1016/0014-5793(77)80263-9. [DOI] [PubMed] [Google Scholar]
  15. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976 Oct 21;62(2):327–367. doi: 10.1016/0022-5193(76)90124-7. [DOI] [PubMed] [Google Scholar]
  20. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  21. Nicholls D. G. Stoicheiometries of proton translocation by mitochondria. Biochem Soc Trans. 1977;5(1):200–203. doi: 10.1042/bst0050200. [DOI] [PubMed] [Google Scholar]
  22. Nicholls D. G. The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient. Eur J Biochem. 1977 Jul 15;77(2):349–356. doi: 10.1111/j.1432-1033.1977.tb11674.x. [DOI] [PubMed] [Google Scholar]
  23. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  24. Papa S., Capuano F., Markert M., Altamura N. The H+/O stoicheiometry of mitochondrial respiration. FEBS Lett. 1980 Feb 25;111(1):243–248. doi: 10.1016/0014-5793(80)80803-9. [DOI] [PubMed] [Google Scholar]
  25. Papa S., Guerrieri F., Lorusso M., Izzo G., Boffoli D., Capuano F., Capitanio N., Altamura N. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria. Biochem J. 1980 Oct 15;192(1):203–218. doi: 10.1042/bj1920203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Papa S. Proton translocation reactions in the respiratory chains. Biochim Biophys Acta. 1976 Apr 30;456(1):39–84. doi: 10.1016/0304-4173(76)90008-2. [DOI] [PubMed] [Google Scholar]
  27. Pozzan T., Di Virgilio F., Bragadin M., Miconi V., Azzone G. F. H+/site, charge/site, and ATP/site ratios in mitochondrial electron transport. Proc Natl Acad Sci U S A. 1979 May;76(5):2123–2127. doi: 10.1073/pnas.76.5.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reynafarje B., Brand M. D., Lehninger A. L. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements. J Biol Chem. 1976 Dec 10;251(23):7442–7451. [PubMed] [Google Scholar]
  29. Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
  30. Rottenberg H. ATP synthesis and electrical membrane potential in mitochondria. Eur J Biochem. 1970 Jul;15(1):22–28. doi: 10.1111/j.1432-1033.1970.tb00971.x. [DOI] [PubMed] [Google Scholar]
  31. Rottenberg H. Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biophys Acta. 1979 Dec 13;549(3-4):225–253. doi: 10.1016/0304-4173(79)90001-6. [DOI] [PubMed] [Google Scholar]
  32. Rottenberg H. The measurement of transmembrane electrochemical proton gradients. J Bioenerg. 1975 May;7(2):61–74. doi: 10.1007/BF01558427. [DOI] [PubMed] [Google Scholar]
  33. Schwartz M. Light induced proton gradient links electron transport and phosphorylation. Nature. 1968 Aug 31;219(5157):915–919. doi: 10.1038/219915a0. [DOI] [PubMed] [Google Scholar]
  34. Slater E. C. Mechanism of oxidative phosphorylation. Annu Rev Biochem. 1977;46:1015–1026. doi: 10.1146/annurev.bi.46.070177.005055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vercesi A., Reynafarje B., Lehninger A. L. Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem. 1978 Sep 25;253(18):6379–6385. [PubMed] [Google Scholar]
  36. Wikström M., Krab K. Proton-pumping cytochrome c oxidase. Biochim Biophys Acta. 1979 Aug 17;549(2):177–122. doi: 10.1016/0304-4173(79)90014-4. [DOI] [PubMed] [Google Scholar]
  37. von Jagow G., Engel W. D. A model for the cytochrome b dimer of the ubiquinol: cytochrome c oxidoreductase as a proton translocator. FEBS Lett. 1980 Feb 25;111(1):1–5. doi: 10.1016/0014-5793(80)80748-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES