Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Jul 1;157(1):197–205. doi: 10.1042/bj1570197

A steady-state kinetic study of the reaction catalysed by the secondary-amine mono-oxygenase of Pseudomonas aminovorans.

D F Brook, P J Large
PMCID: PMC1163831  PMID: 962855

Abstract

1. Secondary-amine mono-oxygenase (proposed EC group 1.14.99.-) was partially purified from trimethylamine-grown Pseudomonas aminovorans by (NH4)2SO4 fractionation, gel filtration, hydrophobic chromatography on 5-aminopentylamino-Sepharose, and affinity chromatography on Sepharose-bound NADH. 2. Some problems in the affinity-chromatography step are discussed. 3. A steady-state kinetic analysis varying substrate, oxygen and electron-donor concentrations was performed, which, over the concentration range studied, gave a series of families of approximately parallel double-reciprocal plots. From secondary and tertiary plots, Michaelis constants of 0.160 mM, 0.086 mM and 0.121 mM were obtained for dimethylamine, NADPH and oxygen respectively. 4. Product-inhibition studies supported the postulated Hexa Uni Ping Pong (triple-transfer) reaction mechanism.

Full text

PDF
198

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry S., O'Carra P. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide. Biochem J. 1973 Dec;135(4):595–607. doi: 10.1042/bj1350595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boulton C. A., Crabbe M. J., Large P. J. Microbial oxidation of amines. Partial purification of a trimethylamine mono-oxygenase from Pseudomonas aminovorans and its role in growth on trimethylamine. Biochem J. 1974 May;140(2):253–263. doi: 10.1042/bj1400253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brook D. F., Large P. J. Inhibition by carbon monoxide of the secondary-amine mono-oxygenase of Pseudomonas aminovorans and the photochemical action spectrum for its reversal. Eur J Biochem. 1975 Jul 15;55(3):601–609. doi: 10.1111/j.1432-1033.1975.tb02197.x. [DOI] [PubMed] [Google Scholar]
  4. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  6. Dalziel K. The interpretation of kinetic data for enzyme-catalysed reactions involving three substrates. Biochem J. 1969 Sep;114(3):547–556. doi: 10.1042/bj1140547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eady R. R., Jarman T. R., Large P. J. Microbial oxidation of amines. Partial purification of a mixed-function secondary-amine oxidase system from Pseudomonas aminovorans that contains an enzymically active cytochrome-P-420-type haemoprotein. Biochem J. 1971 Nov;125(2):449–459. doi: 10.1042/bj1250449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein M., Joh T. H., Garvey T. Q., 3rd Kinetic studies of the enzymatic dopamine beta-hydroxylation reaction. Biochemistry. 1968 Aug;7(8):2724–2730. doi: 10.1021/bi00848a005. [DOI] [PubMed] [Google Scholar]
  9. Houslay M. D., Tipton K. F. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase. Biochem J. 1973 Dec;135(4):735–750. doi: 10.1042/bj1350735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarman T. R., Large P. J. Distribution of the enzymes oxidizing secondary and tertiary amines in Pseudomonas aminovorans grown on various substrates. J Gen Microbiol. 1972 Nov;73(1):205–208. doi: 10.1099/00221287-73-1-205. [DOI] [PubMed] [Google Scholar]
  11. Jarman T. R., Large P. J. Primary amines as uncouplers of electron transport from hydroxylation in the secondary-amine mono-oxygenase system of Pseudomonas aminovorans. Biochem Biophys Res Commun. 1972 Nov 1;49(3):740–747. doi: 10.1016/0006-291x(72)90473-1. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Large P. J. The oxidative cleavage of alkyl-nitrogen bonds in micro-organisms. Xenobiotica. 1971 Jul-Oct;1(4):457–467. doi: 10.3109/00498257109041511. [DOI] [PubMed] [Google Scholar]
  14. Larsson P. O., Mosbach K. Preparation of a NAD(H)-polymer matrix showing coenzyme function of the bound pyridine nucleotide. Biotechnol Bioeng. 1971 May;13(3):393–398. doi: 10.1002/bit.260130306. [DOI] [PubMed] [Google Scholar]
  15. McIntyre R. J., Vaughan P. F. Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase. Biochem J. 1975 Aug;149(2):447–461. doi: 10.1042/bj1490447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
  17. Shaltiel S., Er-El Z. Hydrophobic chromatography: use for purification of glycogen synthetase. Proc Natl Acad Sci U S A. 1973 Mar;70(3):778–781. doi: 10.1073/pnas.70.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strickland S., Massey V. The mechanism of action of the flavoprotein melilotate hydroxylase. J Biol Chem. 1973 Apr 25;248(8):2953–2962. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES