Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Dec 15;160(3):505–519. doi: 10.1042/bj1600505

A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes.

R A Cox, W Hirst
PMCID: PMC1164267  PMID: 797388

Abstract

Mg2+ was shown to affect the conformation of rRNA over the range of 0.03-1.2M-KCl. The species studies were Escherichia coli S-rRNA and L-rRNA (the RNA moieties of the smaller and larger subribosomal particles respectively) and rabbits S-rRNA and L-rRNA. 2. The addition of Mg2+ to rRNA in reconstitution buffer (0.35M-KCl0.01M-Tris/HCl, pH7.2) at 20 degrees C let to an increase in bihelical secondary structure through the formation of additional (mainly A-U) base-pairs (e.g. an additional approx. 58 A-U base-pairs per molecule of E. coli S-rRNA as judged by u.v. difference spectrophotometry...

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnstein H. R., Cox R. A., Hunt J. A. The function of high-molecular-weight ribonucleic acid from rabbit reticulocytes in haemoglobin biosynthesis. Biochem J. 1964 Sep;92(3):648–661. doi: 10.1042/bj0920648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COX R. A., LITTAUER U. Z. Ribonucleic acid from Escherichia coli. III. The influence of ionic strength and temperature on hydrodynamic and optical properties. Biochim Biophys Acta. 1962 Aug 20;61:197–208. [PubMed] [Google Scholar]
  3. Cohn M., Danchin A., Grunberg-Manago M. Proton magnetic relaxation studies of marganous complexes of transfer RNA and related compounds. J Mol Biol. 1969 Jan 14;39(1):199–217. doi: 10.1016/0022-2836(69)90342-8. [DOI] [PubMed] [Google Scholar]
  4. Cox R. A. A spectrophotometric study of the secondary structure of ribonucleic acid isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes. Biochem J. 1970 Mar;117(1):101–118. doi: 10.1042/bj1170101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox R. A. Conformation of nucleic acids and the analysis of the hypochromic effect. Biochem J. 1970 Dec;120(3):539–547. doi: 10.1042/bj1200539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox R. A., Greenwell P., Hirst W. Re-activation of the peptidyltransferase centre of rabbit reticulocyte ribosomes after inactivation by exposure to low concentrations of magnesium ion. Biochem J. 1976 Dec 15;160(3):521–531. doi: 10.1042/bj1600521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox R. A., Greenwell P. Reassembly of the peptidyltransferase centre of larger subparticles of rabbit reticulocyte ribosomes from a core-particle and split-protein fraction. Biochem J. 1976 Dec 15;160(3):533–546. doi: 10.1042/bj1600533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox R. A., Hirst W., Godwin E., Kaiser I. The circular dichroism of ribosomal ribonucleic acids. Biochem J. 1976 May 1;155(2):279–291. doi: 10.1042/bj1550279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox R. A., Pratt H., Huvos P., Higginson B., Hirst W. A study of the thermal stability of ribosomes and biologically active subribosomal particles. Biochem J. 1973 Jul;134(3):775–793. doi: 10.1042/bj1340775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehresmann C., Stiegler P., Mackie G. A., Zimmermann R. A., Ebel J. P., Fellner P. Primary sequence of the 16S ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1975 Feb;2(2):265–278. doi: 10.1093/nar/2.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ghysen A., Bollen A., Herzog A. Ionic effects on the ribosomal quaternary structure. Eur J Biochem. 1970 Mar 1;13(1):132–136. doi: 10.1111/j.1432-1033.1970.tb00908.x. [DOI] [PubMed] [Google Scholar]
  12. Godson G. N., Cox R. A. Structure of Escherichia coli ribosomes: effect of ribonuclease on the 30-S and 50-S subunits. Biochim Biophys Acta. 1970 Apr 15;204(2):489–501. doi: 10.1016/0005-2787(70)90169-3. [DOI] [PubMed] [Google Scholar]
  13. Gould H. J., Arnstein H. R., Cox R. A. The dissociation of reticulocyte polysomes into subunits and the location of messenger RNA. J Mol Biol. 1966 Feb;15(2):600–618. doi: 10.1016/s0022-2836(66)80130-4. [DOI] [PubMed] [Google Scholar]
  14. Hultin T., Näslund P. H., Sjöqvist A. Conditions of structural and functional destabilization of mammalian ribosomes by magnesium ions. Biochim Biophys Acta. 1973 Aug 10;319(1):81–90. doi: 10.1016/0005-2787(73)90043-9. [DOI] [PubMed] [Google Scholar]
  15. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  16. Mizushima S., Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature. 1970 Jun 27;226(5252):1214–1214. doi: 10.1038/2261214a0. [DOI] [PubMed] [Google Scholar]
  17. Morris D. R., Dahlberg J. E., Dahlberg A. E. Detection of cation-specific conformational changes in ribosomal RNA by gel electrophoresis. Nucleic Acids Res. 1975 Apr;2(4):447–458. doi: 10.1093/nar/2.4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Petermann M. L., Pavlovec A. The effect of temperature on the magnesium binding and ultracentrifugal properties of rat liver ribosomes. Biochemistry. 1967 Sep;6(9):2950–2958. doi: 10.1021/bi00861a040. [DOI] [PubMed] [Google Scholar]
  19. Pratt H., Cox R. A. Dissociation of ribosomes from oocytes of Xenopus laevis into active subparticles. Biochem J. 1971 Oct;124(5):897–903. doi: 10.1042/bj1240897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Römer R., Hach R. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. Eur J Biochem. 1975 Jun 16;55(1):271–284. doi: 10.1111/j.1432-1033.1975.tb02160.x. [DOI] [PubMed] [Google Scholar]
  21. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
  22. Ungewickell E., Ehresmann C., Stiegler P., Garrett R. Evidence for tertiary structural RNA-RNA interactions within the protein S4 binding site at the 5'-end of 16S ribosomal RNA of Escherichia coli.+. Nucleic Acids Res. 1975 Oct;2(10):1867–1888. doi: 10.1093/nar/2.10.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiss R. L., Kimes B. W., Morris D. R. Cations and ribosome structure. 3. Effects on the 30S and 50S subunits of replacing bound Mg 2+ by inorganic cations. Biochemistry. 1973 Jan 30;12(3):450–456. doi: 10.1021/bi00727a014. [DOI] [PubMed] [Google Scholar]
  24. Weiss R. L., Morris D. R. Cations and ribosome structure. I. Effects on the 30S subunit of substituting polyamines for magnesium ion. Biochemistry. 1973 Jan 30;12(3):435–441. doi: 10.1021/bi00727a012. [DOI] [PubMed] [Google Scholar]
  25. Willick G. E., Kay C. M. Magnesium-induced conformational change in transfer ribonucleic acid as measured by circular dichroism. Biochemistry. 1971 Jun 8;10(12):2216–2222. doi: 10.1021/bi00788a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES