Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 1;161(1):83–92. doi: 10.1042/bj1610083

The effect of temperature on the individual stages of the hydrolysis of non-specific-p-nitrophenol esters by alpha-chymotrypsin.

P A Adams, E R Swart
PMCID: PMC1164476  PMID: 851426

Abstract

Precise studies were performed on the effect of temperature on the rate and equilibrium parameters characterizing the individual stages of the alpha-chymotrypsin-catalysed hydrolysis of non-specific p-nitrophenol esters at pH 7.40 and 8.50. At both pH values the results indicate that a sharp kinetic anomaly is observed in Arrhenius plots of these parameters for the binding and acylation stages of the process, but not for the deacylation stage. Detailed comparison with other kinetic studies was made, and a comparison with thermal transitions observed in alpha-chymotrypsin by using physical techniques was attempted. A detailed discussion of possible causes of the anomalies is given.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. A. The kinetics and mechanism of the recombination reaction between apomyoglobin and haemin. Biochem J. 1976 Nov;159(2):371–376. doi: 10.1042/bj1590371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENDER M. L., KEZDY J. MECHANISM OF ACTION OF PROTEOLYTIC ENZYMES. Annu Rev Biochem. 1965;34:49–76. doi: 10.1146/annurev.bi.34.070165.000405. [DOI] [PubMed] [Google Scholar]
  3. Baggott J. E., Klapper M. H. Rate enhancement specificity with alpha-chymotrypsin: temperature dependence of deacylation. Biochemistry. 1976 Apr 6;15(7):1473–1481. doi: 10.1021/bi00652a018. [DOI] [PubMed] [Google Scholar]
  4. Bender M. L., Begué-Cantón M. L., Blakeley R. L., Brubacher L. J., Feder J., Gunter C. R., Kézdy F. J., Killheffer J. V., Jr, Marshall T. H., Miller C. G. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. J Am Chem Soc. 1966 Dec 20;88(24):5890–5913. doi: 10.1021/ja00976a034. [DOI] [PubMed] [Google Scholar]
  5. Bender M. L., Kézdy F. J., Wedler F. C. Alpha-chymotrypsin: enzyme concentration and kinetics. J Chem Educ. 1967 Feb;44(2):84–88. doi: 10.1021/ed044p84. [DOI] [PubMed] [Google Scholar]
  6. Biltonen R., Lumry R. Studies of the chymotrypsinogen family of proteins. VI. Characterization of the conformational variation of chymotrypsin. J Am Chem Soc. 1969 Jul 16;91(15):4251–4256. doi: 10.1021/ja01043a038. [DOI] [PubMed] [Google Scholar]
  7. Biltonen R., Lumry R. Studies of the chymotrypsinogen family of proteins. VII. Thermodynamic analysis of transition I of alpha-chymotrypsin. J Am Chem Soc. 1969 Jul 16;91(15):4256–4264. doi: 10.1021/ja01043a039. [DOI] [PubMed] [Google Scholar]
  8. Fersht A. R., Requena Y. Equilibrium and rate constants for the interconversion of two conformations of -chymotrypsin. The existence of a catalytically inactive conformation at neutral p H. J Mol Biol. 1971 Sep 14;60(2):279–290. doi: 10.1016/0022-2836(71)90294-4. [DOI] [PubMed] [Google Scholar]
  9. GUTFREUND H., STURTEVANT J. M. The mechanism of the reaction of chymotrypsin with p-nitrophenyl acetate. Biochem J. 1956 Aug;63(4):656–661. doi: 10.1042/bj0630656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glick D. M. Effects of solutes on the temperature dependence of chymotryptic hydrolysis. Biochim Biophys Acta. 1971 Nov 13;250(2):390–394. doi: 10.1016/0005-2744(71)90195-1. [DOI] [PubMed] [Google Scholar]
  11. Hymes A. J., Cuppett C. C., Canady W. J. Thermodynamics of alpha-chymotrypsin-inhibitor complex formation. Effects of structural modification of the inhibitor. J Biol Chem. 1969 Feb 25;244(4):637–643. [PubMed] [Google Scholar]
  12. Ingles D. W., Knowles J. R. Specificity and stereospecificity of alpha-chymotrypsin. Biochem J. 1967 Aug;104(2):369–377. doi: 10.1042/bj1040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KEZDY F. J., BENDER M. L. The kinetics of the alpha-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry. 1962 Nov;1:1097–1106. doi: 10.1021/bi00912a021. [DOI] [PubMed] [Google Scholar]
  14. Marshall T. H., Chen V. Activation parameters of elastase and chymotrypsin catalyzed hydrolysis. Differential role of favorable enthalpy in determining reactivity. J Am Chem Soc. 1973 Aug 8;95(16):5400–5405. doi: 10.1021/ja00797a047. [DOI] [PubMed] [Google Scholar]
  15. Martinek K., Dorovska V. N., Varfolomeyev S. D., Berezin I. V. The role of entropy and enthalpy factors in kinetic specificity of -chymotrypsin. Temperature dependence study of acyl- -chymotrypsins deacylation. Biochim Biophys Acta. 1972 Jun 22;271(1):80–86. doi: 10.1016/0005-2795(72)90135-3. [DOI] [PubMed] [Google Scholar]
  16. Talsky G. The anomalous temperature dependence of enzyme-catatlyzed reactions. Angew Chem Int Ed Engl. 1971 Aug;10(8):548–554. doi: 10.1002/anie.197105481. [DOI] [PubMed] [Google Scholar]
  17. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wasi S., Hofmann T. The conformational state of methionine residues in the temperature-controlled transition of chymotrypsinogen and -chymotrypsin. Can J Biochem. 1973 Jun;51(6):797–805. doi: 10.1139/o73-099. [DOI] [PubMed] [Google Scholar]
  19. Wedler F. C., Uretsky L. S., McClune G., Cencula J. Conformational states of chymotrypsin at high pH: temperature effects on catalysis and binding. Arch Biochem Biophys. 1975 Oct;170(2):476–484. doi: 10.1016/0003-9861(75)90143-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES