Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Feb 1;161(2):253–263. doi: 10.1042/bj1610253

Purification of glycolytic enzymes by using affinity-elution chromatography.

R K Scopes
PMCID: PMC1164503  PMID: 192194

Abstract

1. A systematic procedure for the purification of enzymes by affinity-elution chromatography is described. Enzymes are adsorbed on a cation-exchanger, and eluted with ligands specific for the enzyme concerned. 2. All of the glycolytic and some related enzymes present in rabbit muscle can be purified by the affinity-elution technique. The pH range for adsorption and elution of each enzyme was found, and the effects of minor variations of conditions are described. 3. A description of experimental conditions suitable for affinity elution of each enzyme is given, together with special features relevant to each individual enzyme. 4. Theoretical considerations of affinity elution chromatography are discussed, including its limitations, advantages and disadvantages compared with affinity-adsorption chromatography. Possible developments are suggested to cover enzymes which because of their adsorption characteristics are not at present amenable to affinity-elution procedures.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMELUNXEN R., GRISOLIA S. The mechanism of triosephosphate dehydrogenase inactivation by reduced diphosphopyridine nucleotide. J Biol Chem. 1962 Oct;237:3240–3244. [PubMed] [Google Scholar]
  2. Ainsworth S., MacFarlane N. A kinetic study of rabbit muscle pyruvate kinase. Biochem J. 1973 Feb;131(2):223–236. doi: 10.1042/bj1310223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black W. J., Van Tol A., Fernando J., Horecker B. L. Isolation of ahighly active fructose diphosphatase from rabit muscle: its subunit structure and activation by monovalent cations. Arch Biochem Biophys. 1972 Aug;151(2):576–590. doi: 10.1016/0003-9861(72)90535-8. [DOI] [PubMed] [Google Scholar]
  4. Brewer J. M., DeSa R. J. Stopped flow spectrophotometric studies of yeast enolase subunit interaction. J Biol Chem. 1972 Dec 25;247(24):7941–7947. [PubMed] [Google Scholar]
  5. Britton H. G., Carreras J., Grisolia S. Mechanism of yeast phosphoglycerate mutase. Biochemistry. 1972 Aug 1;11(16):3008–3014. doi: 10.1021/bi00766a012. [DOI] [PubMed] [Google Scholar]
  6. CZOK R., BUECHER T. Crystallized enzymes from the myogen of rabbit skeletal muscle. Adv Protein Chem. 1960;15:315–415. doi: 10.1016/s0065-3233(08)60311-3. [DOI] [PubMed] [Google Scholar]
  7. Chappel A., Scopes R. K., Holmes R. S. A high specific activity form of mammalian liver aldolase. FEBS Lett. 1976 Apr 15;64(1):59–61. doi: 10.1016/0014-5793(76)80248-7. [DOI] [PubMed] [Google Scholar]
  8. Chilla R., Doering K. M., Domagk G. F., Rippa M. A simplified procedure for the isolation of a highly active crystalline glucose-6-phosphate dehydrogenase from Candida utilis. Arch Biochem Biophys. 1973 Nov;159(1):235–239. doi: 10.1016/0003-9861(73)90449-9. [DOI] [PubMed] [Google Scholar]
  9. Everse J., Kaplan N. O. Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol. 1973;37:61–133. doi: 10.1002/9780470122822.ch2. [DOI] [PubMed] [Google Scholar]
  10. FISCHER E. H., KREBS E. G. The isolation and crystallization of rabbit skeletal muscle phosphorylase b. J Biol Chem. 1958 Mar;231(1):65–71. [PubMed] [Google Scholar]
  11. Feldhau P., Fröhlich T., Goody R. S., Isakov M., Schirmer R. H. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur J Biochem. 1975 Sep 1;57(1):197–204. doi: 10.1111/j.1432-1033.1975.tb02291.x. [DOI] [PubMed] [Google Scholar]
  12. Heil A., Müller G., Noda L., Pinder T., Schirmer H., Schirmer I., von Zabern I. The amino-acid sequence of sarcine adenylate kinase from skeletal muscle. Eur J Biochem. 1974 Mar 15;43(1):131–144. doi: 10.1111/j.1432-1033.1974.tb03393.x. [DOI] [PubMed] [Google Scholar]
  13. Krietsch W. K., Pentchev P. G., Klingenbürg H., Hofstätter T., Bücher T. The isolation and crystallization of yeast and rabbit liver triose phosphate isomerase and a comparative characterization with the rabbit muscle enzyme. Eur J Biochem. 1970 Jun;14(2):289–300. doi: 10.1111/j.1432-1033.1970.tb00289.x. [DOI] [PubMed] [Google Scholar]
  14. LING K. H., MARCUS F., LARDY H. A. PURIFICATION AND SOME PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHOFRUCTOKINASE. J Biol Chem. 1965 May;240:1893–1899. [PubMed] [Google Scholar]
  15. NIHEI T., NODA L., MORALES M. F. Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase-catalyzed reaction. J Biol Chem. 1961 Dec;236:3203–3209. [PubMed] [Google Scholar]
  16. Nimmo H. G., Tipton K. F. The purification of fructose 1,6-diphosphatase from ox liver and its activation by ethylenediaminetetra-acetate. Biochem J. 1975 Feb;145(2):323–334. doi: 10.1042/bj1450323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. POGELL B. M. Enzyme purification by selective elution with substrate from substituted cellulose columns. Biochem Biophys Res Commun. 1962 Apr 20;7:225–230. doi: 10.1016/0006-291x(62)90179-1. [DOI] [PubMed] [Google Scholar]
  18. Penhoet E. E., Rutter W. J. Detection and isolation of mammalian fructose-diphosphate aldolases. Methods Enzymol. 1975;42:240–249. doi: 10.1016/0076-6879(75)42121-8. [DOI] [PubMed] [Google Scholar]
  19. SCOPES R. K. ACID DENATURATION OF CREATINE KINASE. Arch Biochem Biophys. 1965 May;110:320–324. doi: 10.1016/0003-9861(65)90126-8. [DOI] [PubMed] [Google Scholar]
  20. Sasaki R., Ikura K., Sugimoto E., Chiba H. Purification of bisphosphoglyceromutase, 2,3-bisphosphoglycerate phosphatase and phosphoglyceromutase from human erthrocytes. Three enzyme activities in one protein. Eur J Biochem. 1975 Jan 15;50(3):581–593. doi: 10.1111/j.1432-1033.1975.tb09899.x. [DOI] [PubMed] [Google Scholar]
  21. Scopes R. K. Crystalline 3-phosphoglycerate kinase from skeletal muscle. Biochem J. 1969 Jul;113(3):551–554. doi: 10.1042/bj1130551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  23. Scopes R. K. Methods for starch-gel electrophoresis of sarcoplasmic proteins. An investigation of the relative mobilities of the glycolytic enzymes from the muscles of a variety of species. Biochem J. 1968 Mar;107(2):139–150. doi: 10.1042/bj1070139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scopes R. K. Multiple enzyme purifications from muscle extracts by using affinity-elution-chromatographic procedures. Biochem J. 1977 Feb 1;161(2):265–277. doi: 10.1042/bj1610265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scopes R. K., Penny I. F. Subunit sizes of muscle proteins, as determined by sodium dodecyl sulphate gel electrophoresis. Biochim Biophys Acta. 1971 May 25;236(2):409–415. doi: 10.1016/0005-2795(71)90221-2. [DOI] [PubMed] [Google Scholar]
  26. Scopes R. K. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis. Biochem J. 1973 May;134(1):197–208. doi: 10.1042/bj1340197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TIETZ A., OCHOA S. Fluorokinase and pyruvic kinase. Arch Biochem Biophys. 1958 Dec;78(2):477–493. doi: 10.1016/0003-9861(58)90372-2. [DOI] [PubMed] [Google Scholar]
  28. von der Haar F. Affinity elution as a purification method for aminoacyl-tRNA synthetases. Eur J Biochem. 1973 Apr 2;34(1):84–90. doi: 10.1111/j.1432-1033.1973.tb02731.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES