Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Feb 1;161(2):345–355. doi: 10.1042/bj1610345

L-serine dehydratase from Arthrobacter globiformis.

F Gannon, E S Bridgeland, K M Jones
PMCID: PMC1164512  PMID: 322657

Abstract

1. L-Serine dehydratase (EC 4.2.1.13) was purified 970-fold from glycine-grown Arthrobacter globiformis to a final specific activity of 660micronmol of pyruvate formed/min per mg of protein. 2. The enzyme is specific for L-serine; D-serine, L-threonine and L-cysteine are not attacked. 3. The time-course of pyruvate formation by the purified enzyme, in common with enzyme in crude extracts and throughout the purification, is non-linear. The reaction rate increases progressively for several minutes before becoming constant. The enzyme is activated by preincubation with L-serine and a linear time-course is then obtained. 4. The substrate-saturation curve for L-serine is sigmoid. The value of [S]0.5 varies with protein concentration, from 6.5mM at 23microng/ml to 20mM at 0.23microng/ml. The Hill coefficient remains constant at 2.9.5 The enzyme shows a non-specific requirement for a univalent or bivalent cation. Half-maximal activity is produced by 1.0mM-MgCl2 or by 22.5mM-KCl. 6. L-Cysteine and D-serine act as competitive inhibitors of L-serine dehydratase, with Ki values of 1.2 and 4.9mM respectively. L-Cysteine, at higher concentrations, also causes a slowly developing irreversible inhibition of the enzyme. 7. Inhibition by HgCl2 (5micronM)can be partially reversed in its initial phase by 1mM-L-cysteine, but after 10 min it becomes irreversible. 8. In contrast with the situation in all cell-free preparations, toluene-treated cells of A. globiformis form pyruvate from L-serine at a constant rate from the initiation of the reaction, show a hyperbolic substrate-saturation curve with an apparent Km of 7mM and do not require a cation for activity.

Full text

PDF
355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alföldi L., Raskó I., Kerekes E. L-serine deaminase of Escherichia coli. J Bacteriol. 1968 Nov;96(5):1512–1518. doi: 10.1128/jb.96.5.1512-1518.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
  3. CRAWFORD I. P., ITO J. SERINE DEAMINATION BY THE B PROTEIN OF ESCHERICHIA COLI TRYPTOPHAN SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Mar;51:390–397. doi: 10.1073/pnas.51.3.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter J. E., Sagers R. D. Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici. J Bacteriol. 1972 Feb;109(2):757–763. doi: 10.1128/jb.109.2.757-763.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Dowhan W., Jr, Snell E. E. D-serine dehydratase from Escherichia coli. 3. Resolution of pyridoxal 5'-phosphate and coenzyme specificity. J Biol Chem. 1970 Sep 25;245(18):4629–4635. [PubMed] [Google Scholar]
  8. Dowhan W., Jr, Snell E. E. D-serine dehydratase from Escherichia coli. II. Analytical studies and subunit structure. J Biol Chem. 1970 Sep 25;245(18):4618–4628. [PubMed] [Google Scholar]
  9. FRISELL W. R., MEECH L. A., MACKENZIE C. G. A simplified photometric analysis for serine and formaldehyde. J Biol Chem. 1954 Apr;207(2):709–716. [PubMed] [Google Scholar]
  10. Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
  11. Griffiths S. K., DeMoss R. D. Physiological comparison of L-serine dehydratase and tryptophanase from Bacillus alvei. J Bacteriol. 1970 Mar;101(3):813–820. doi: 10.1128/jb.101.3.813-820.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holzer H., Cennamo C., Boll M. Product activation of yeast threonine dehydratase by ammonia. Biochem Biophys Res Commun. 1964;14:487–492. doi: 10.1016/0006-291x(64)90256-6. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. NAGABHUSHANAM A., GREENBERG D. M. ISOLATION AND PROPERTIES OF A HOMOGENEOUS PREPARATION OF CYSTATHIONINE SYNTHETASE-L-SERINE AND L-THREONINE DEHYDRATASE. J Biol Chem. 1965 Jul;240:3002–3008. [PubMed] [Google Scholar]
  15. Orr M. D., Blakley R. L., Panagou D. Discontinuous buffer systems for analytical and preparative electrophoresis of enzymes on polyacrylamide gel. Anal Biochem. 1972 Jan;45(1):68–85. doi: 10.1016/0003-2697(72)90008-5. [DOI] [PubMed] [Google Scholar]
  16. Raskó I., Kerekes E., Alföldi L. Properties of L-serine deaminase from Salmonella typhi-murium and Bacillus cereus. Acta Microbiol Acad Sci Hung. 1969;16(3):237–244. [PubMed] [Google Scholar]
  17. Reeves R. E., Sols A. Regulation of Escherichia coli phosphofructokinase in situ. Biochem Biophys Res Commun. 1973 Jan 23;50(2):459–466. doi: 10.1016/0006-291x(73)90862-0. [DOI] [PubMed] [Google Scholar]
  18. SISTROM W. R. On the physical state of the intracellularly accumulates substrates of beta-galactoside-permease in Escherichia coli. Biochim Biophys Acta. 1958 Sep;29(3):579–587. doi: 10.1016/0006-3002(58)90015-5. [DOI] [PubMed] [Google Scholar]
  19. Umbarger H. E. Threonine deaminases. Adv Enzymol Relat Areas Mol Biol. 1973;37:349–395. doi: 10.1002/9780470122822.ch6. [DOI] [PubMed] [Google Scholar]
  20. Weitzman P. D. Behaviour of enzymes at high concentration. Use of permeabilised cells in the study of enzyme activity and its regulation. FEBS Lett. 1973 Jun 1;32(2):247–250. doi: 10.1016/0014-5793(73)80843-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES