Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Mar 1;161(3):495–498. doi: 10.1042/bj1610495

Molecular conformation of sodium heparan sulphate in the condensed phase.

H F Elloway, E D Atkins
PMCID: PMC1164533  PMID: 139888

Abstract

By using the X-ray-diffraction results reported previously for sodium heparan sulphate, a twofold helical conformation with an axially projected disaccharide repeat (h) equal to 0.93 nm has been examined in detail. On the basis of a repeating sequence of 1,4-alpha-D-glucosamine and 1,4-beta-D-glucuronic acid, trial and stereochemically feasible molecular models were computer-generated. An optimum twofold helical conformation is proposed, incorporating stabilizing intra-chain hydrogen bonds across both glycosidic linkages.

Full text

PDF
498

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins E. D., Laurent T. C. X-ray-diffraction patterns from chondroitin 4-sulphate, dermatan sulphate and heparan sulphate. Biochem J. 1973 Jul;133(3):605–606. doi: 10.1042/bj1330605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dietrich C. P., De Oca H. M. Production of heparin related mucopolysaccharides by mammalian cells in culture. Proc Soc Exp Biol Med. 1970 Sep;134(4):955–962. doi: 10.3181/00379727-134-34920. [DOI] [PubMed] [Google Scholar]
  3. Helting T., Lindahl U. Occurrence and biosynthesis of beta-glucuronidic linkages in heparin. J Biol Chem. 1971 Sep 10;246(17):5442–5447. [PubMed] [Google Scholar]
  4. Hovingh P., Linker A. The disaccharide repeating-units of heparan sulfate. Carbohydr Res. 1974 Oct;37(1):181–192. doi: 10.1016/s0008-6215(00)87073-1. [DOI] [PubMed] [Google Scholar]
  5. Hök M., Lindahl U., Iverius P. H. Distribution of sulphate and iduronic acid residues in heparin and heparan sulphate. Biochem J. 1974 Jan;137(1):33–43. doi: 10.1042/bj1370033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jansson L., Lindahl U. Evidence for the existence of a multichain proteoglycan of heparan sulphate. Biochem J. 1970 May;117(4):699–702. doi: 10.1042/bj1170699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson L. N. The crystal structure of N-acetyl-alpha-D-glucosamine. Acta Crystallogr. 1966 Dec 10;21(6):885–891. doi: 10.1107/s0365110x66004146. [DOI] [PubMed] [Google Scholar]
  8. Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
  9. Kraemer P. M. Heparan sulfates of cultured cells. II. Acid-soluble and -precipitable species of different cell lines. Biochemistry. 1971 Apr 13;10(8):1445–1451. doi: 10.1021/bi00784a027. [DOI] [PubMed] [Google Scholar]
  10. Kraemer P. M., Smith D. A. High molecular-weight heparan sulfate from the cell surface. Biochem Biophys Res Commun. 1974 Jan 23;56(2):423–430. doi: 10.1016/0006-291x(74)90859-6. [DOI] [PubMed] [Google Scholar]
  11. Obrind B., Pertoft H., Iverius P. H., Laurent The effect of calcium on the macromolecular properties of heparan sulfate. Connect Tissue Res. 1975;3(2):187–193. doi: 10.3109/03008207509152178. [DOI] [PubMed] [Google Scholar]
  12. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  13. Ramakrishnan C., Prasad N. Rigid-body refinement and conformation of -chitin. Biochim Biophys Acta. 1972 Jan 28;261(1):123–135. doi: 10.1016/0304-4165(72)90321-2. [DOI] [PubMed] [Google Scholar]
  14. Winter W. T., Smith P. J., Arnott S. Hyaluronic acid: structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms. J Mol Biol. 1975 Dec 5;99(2):219–235. doi: 10.1016/s0022-2836(75)80142-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES