Abstract
Mutations at the OLI 1 or OLI 2 loci of mitochondria DNA in Saccharomyces cerevisiae are associated with a diminished growth rate in nutritionally suboptimal cultures supplemented with an oxidizable carbon source. In the case of mutant OR146(OLI1) there is a 35% loss of mitochondrial protein during fractionation in vitro, suggesting that the mutationally altered adenosine triphosphatase(ATPase) confers some instability on the mitochondrial membrane. The possibility is discussed that this reflects an unstable mitchondrial population in vivo, leading the observed growth deficiency. Mitochondria from mutant OR146 at the OLI 1 locus show a relatively oligomycin-resistant State-3 respiration, but the same ADP/O and respiratory-control quotients as the isonuclear wild-type. A slightly lowered Qo2 with NADH-linked substrates was observed and is discussed. For both strains the apparent H+/O ratios were close to 4 with pyruvate, ethanol and alpha-oxoglutarate, but consistently lower with succinate and citrate. For each substrate a characteristic t 1/2 (time for half-decay of the transmembrane pH differential) range was found, consistent with the view that the substrates effecitvely carry the protons back across the membrane. As expected, H+/O ratios were independent of t 1/2 for all substrates, with the exception of alpha-oxoglutarate in the case of the wild-type, where an inverse correlation was found. The lack of this correlation in the case of the mutant was the only apparent difference in the translocation parameters observed. A hypothesis relating this to the functioning of the oligomycin-resistant ATPase is proposed.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avner P. R., Coen D., Dujon B., Slonimski P. P. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):9–52. doi: 10.1007/BF00292982. [DOI] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clavilier L. Mitochondrial Genetics. Xii. an Oligomycin-Resistant Mutant Localized at a New Mitochondrial Locus in SACCHAROMYCES CEREVISIAE. Genetics. 1976 Jun;83(2):227–243. doi: 10.1093/genetics/83.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosson J., Spiridakis A. ADP-dependent thermal reactivation of triton-inactivated ATPase from mitochondrially determined oligomycin-resistant mutants of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Aug 5;59(3):1039–1046. doi: 10.1016/s0006-291x(74)80084-7. [DOI] [PubMed] [Google Scholar]
- Downie J. A., Garland P. B. Respiration-driven proton translocation by yeast mitochondria with differing efficiencies of oxidative phosphorylation. Biochem J. 1973 Aug;134(4):1045–1049. doi: 10.1042/bj1341045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J. The dependence on dicarboxylic acids and energy of citrate accumulation in depleted rat liver mitochondria. Biochem J. 1968 Sep;109(2):247–251. doi: 10.1042/bj1090247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haslam J. M., Spithill T. W., Linnane A. W., Chappell J. B. Biogenesis of mitochondria. The effects of altered membrane lipid composition on cation transport by mitochondria of Saccharomyces cerevisiae. Biochem J. 1973 Aug;134(4):949–957. doi: 10.1042/bj1340949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolarov J., Subík J., Kovac L. Oxidative phosphorylation in yeast. 8. Osmotic and permeability properties of mitochondria isolated from wild-type yeast and from a respiration-deficient mutant. Biochim Biophys Acta. 1972 Jun 23;267(3):457–464. doi: 10.1016/0005-2728(72)90173-9. [DOI] [PubMed] [Google Scholar]
- Kovac L., Groot G. S., Racker E. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts. Biochim Biophys Acta. 1972 Jan 21;256(1):55–65. doi: 10.1016/0005-2728(72)90162-4. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
- Mitchell P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 1974 Jul 15;43(2):189–194. doi: 10.1016/0014-5793(74)80997-x. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur J Biochem. 1968 May;4(4):530–539. doi: 10.1111/j.1432-1033.1968.tb00245.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature. 1965 Oct 9;208(5006):147–151. doi: 10.1038/208147a0. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Sottocasa G., Ernster L. Current approaches to the mechanism of energy-coupling in the respiratory chain. Studies with yeast mitochondria. Bull Soc Chim Biol (Paris) 1966;48(11):1189–1203. [PubMed] [Google Scholar]
- PENEFSKY H. S., PULLMAN M. E., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine tolphosphatase in oxidative phosphorylation. J Biol Chem. 1960 Nov;235:3330–3336. [PubMed] [Google Scholar]
- SOMLO M. [L-lactic dehydrogenase in aerobic yeast. Comparison of the properties of the bound enzyme and the soluble enzyme]. Biochim Biophys Acta. 1962 Dec 4;65:333–346. doi: 10.1016/0006-3002(62)91052-1. [DOI] [PubMed] [Google Scholar]
- Somlo M., Avner P. R., Cosson J., Dujon B., Krupa M. Oligomycin sensitivity of ATPase studied as a function of mitochondrial biogenesis, using mitochondrially determined oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem. 1974 Mar 1;42(2):439–445. doi: 10.1111/j.1432-1033.1974.tb03357.x. [DOI] [PubMed] [Google Scholar]
- Somlo M., Krupa M. A study of the density pattern of ATPase and respiratory enzymes during mitochondrial biogenesis of Saccharomyces cerevisiae. Eur J Biochem. 1974 Mar 1;42(2):429–437. doi: 10.1111/j.1432-1033.1974.tb03356.x. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Akai A., Foury F. Assembly of the mitochondrial membrane system XVI. Modified form of the ATPase proteolipid in oligomycin-resistant mutants of Saccharomyces cerevisiae. FEBS Lett. 1976 Jun 15;65(3):391–395. doi: 10.1016/0014-5793(76)80154-8. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Meagher P. Assesmbly of the mitochondrial membrane system. VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. J Biol Chem. 1972 Jan 25;247(2):594–603. [PubMed] [Google Scholar]
- Tzagoloff A., Rubin M. S., Sierra M. F. Biosynthesis of mitochondrial enzymes. Biochim Biophys Acta. 1973 Feb 12;301(1):71–104. doi: 10.1016/0304-4173(73)90013-x. [DOI] [PubMed] [Google Scholar]
- de Haan E. J., Tager J. M. Evidence for a permeability barrier for alpha-oxoglutarate in rat-liver mitochondria. Biochim Biophys Acta. 1968 Jan 15;153(1):98–112. doi: 10.1016/0005-2728(68)90150-3. [DOI] [PubMed] [Google Scholar]

