Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 15;162(1):191–194. doi: 10.1042/bj1620191

Age-related changes in protein turnover and ribonucleic acid of the diaphragm muscle of normal and dystrophic hamsters.

D F Goldspink, G Goldspink
PMCID: PMC1164582  PMID: 849275

Abstract

Diaphragm muscles of dystrophic hamsters were found to be larger than those of control animals at two of three ages studied. The additional growth of these afflicted muscles correlated with large increases in protein synthesis and concentrations of RNA. Protein breakdown was also increased in the dystrophic muscles, but to a smaller extent than synthesis.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore C. R., Doerr L. Postnatal development of fiber types in normal and dystrophic skeletal muscle of the chick. Exp Neurol. 1971 Mar;30(3):431–446. doi: 10.1016/0014-4886(71)90144-0. [DOI] [PubMed] [Google Scholar]
  2. Battelle B. A., Florini J. R. Protein synthesis in chicken muscular dystrophy. Biochemistry. 1973 Feb;12(4):635–643. doi: 10.1021/bi00728a011. [DOI] [PubMed] [Google Scholar]
  3. Diehl J. F., Jones R. R. Effect of denervation and muscular dystrophy on amino acid transport in skeletal muscle. Am J Physiol. 1966 May;210(5):1080–1085. doi: 10.1152/ajplegacy.1966.210.5.1080. [DOI] [PubMed] [Google Scholar]
  4. Fulks R. M., Li J. B., Goldberg A. L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem. 1975 Jan 10;250(1):290–298. [PubMed] [Google Scholar]
  5. Goldberg A. L., Jablecki C., Li J. B. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Effects of use and disuse on amino acid transport and protein turnover in muscle. Ann N Y Acad Sci. 1974 Mar 22;228(0):190–201. doi: 10.1111/j.1749-6632.1974.tb20510.x. [DOI] [PubMed] [Google Scholar]
  6. Goldberg A. L. Protein synthesis during work-induced growth of skeletal muscle. J Cell Biol. 1968 Mar;36(3):653–658. doi: 10.1083/jcb.36.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldspink D. F., Goldberg A. L. Problems in the use of (Me- 3H) thymidine for the measurement of DNA synthesis. Biochim Biophys Acta. 1973 Apr 11;299(4):521–532. doi: 10.1016/0005-2787(73)90224-4. [DOI] [PubMed] [Google Scholar]
  8. Goldspink D. F. The effects of denervation on protein turnover of rat skeletal muscle. Biochem J. 1976 Apr 15;156(1):71–80. doi: 10.1042/bj1560071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamosch M., Lesch M., Baron J., Kaufman S. Enhanced protein synthesis in a cell-free system from hypertrophied skeletal muscle. Science. 1967 Aug 25;157(3791):935–937. doi: 10.1126/science.157.3791.935. [DOI] [PubMed] [Google Scholar]
  10. Homburger F., Nixon C. W., Eppenberger M., Baker J. R. Hereditary myopathy in the Syrian hamster: studies on pathogenesis. Ann N Y Acad Sci. 1966 Sep 9;138(1):14–27. doi: 10.1111/j.1749-6632.1966.tb41151.x. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Manchester K. L., Harris E. J. Effect of denervation on the synthesis of ribonucleic acid and deoxyribonucleic acid in rat diaphragm muscle. Biochem J. 1968 Jun;108(2):177–183. doi: 10.1042/bj1080177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millward D. J., Garlick P. J., James W. P., Nnanyelugo D. O., Ryatt J. S. Relationship between protein synthesis and RNA content in skeletal muscle. Nature. 1973 Jan 19;241(5386):204–205. doi: 10.1038/241204a0. [DOI] [PubMed] [Google Scholar]
  14. Oppenheimer H., Markiewicz L. Comparative study of ribosomes from dystrophic and normal chicken breast muscle. Biochem Med. 1973 Jun;7(3):479–490. doi: 10.1016/0006-2944(73)90070-7. [DOI] [PubMed] [Google Scholar]
  15. Pennington R. J., Robinson J. E. Cathepsin activity in normal and dystrophic human muscle. Enzymol Biol Clin (Basel) 1968;9(3):175–182. doi: 10.1159/000458253. [DOI] [PubMed] [Google Scholar]
  16. Polishchuk S. N. Nukleïnovi kysloty iader skeletnykh i sertsevoho m'iaziv kroliv u normi ta za eskperymental'noï m'iazovoi dystrofiï. Ukr Biokhim Zh. 1969;41(6):611–617. [PubMed] [Google Scholar]
  17. SIMON E. J., GROSS C. S., LESSELL I. M. Turnover of muscle and liver proteins in mice with hereditary muscular dystrophy. Arch Biochem Biophys. 1962 Jan;96:41–46. doi: 10.1016/0003-9861(62)90447-2. [DOI] [PubMed] [Google Scholar]
  18. Srivastava U. Biochemical changes in progressive muscular dystrophy. 8. Protein synthesis in skeletal muscle of mouse as a function of muscular dystrophy. Arch Biochem Biophys. 1969 Dec;135(1):237–243. doi: 10.1016/0003-9861(69)90535-9. [DOI] [PubMed] [Google Scholar]
  19. Srivastava U. Biochemical changes in progressive muscular dystrophy. VI. Incorporation of uridine-2-14C into RNA of various tissue of normal and dystrophic mice. Can J Biochem. 1967 Sep;45(9):1419–1425. doi: 10.1139/o67-167. [DOI] [PubMed] [Google Scholar]
  20. Watts D. C., Reid J. D. Comparison of the protein-synthesizing machinery in the skeletal muscle of normal and dystrophic Bar Harbor mice. Biochem J. 1969 Nov;115(3):377–382. doi: 10.1042/bj1150377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weinstock I. M., Markiewicz L. Muscle protein synthesis during development of the normal and dystrophic chicken. Activity of supernatant elongation factors. Biochim Biophys Acta. 1974 Dec 6;374(2):197–206. doi: 10.1016/0005-2787(74)90363-3. [DOI] [PubMed] [Google Scholar]
  22. Wrogemann K., Blanchaer M. C., Jacobson B. E. A calcium-associated magnesium-responsive defect of respiration and oxidative phosphorylation by skeletal muscle mitochondria of BIO 14.6 dystrophic hamsters. Life Sci II. 1970 Oct 22;9(20):1167–1173. doi: 10.1016/0024-3205(70)90035-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES