Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Feb 15;162(2):247–255. doi: 10.1042/bj1620247

Protein determinants of myelination in different regions of developing rat central nervous system.

N L Banik, M E Smith
PMCID: PMC1164596  PMID: 192217

Abstract

Measurements of several different protein determinants correlated with the time and rate of myelination in five areas of the central nervous system are presented. The deposition of protein in the subcellular fraction corresponding to the density of adult myelin, the appearance of basic protein characteristic myelin, the change in proportions of the individual myelin proteins, the appearance and distribution of the myelin marker 2':3'-cyclic nucleotide3'-phosphohydrolase, and the results of morphological studies of purified myelin are compared. According to these various criteria, and in agreement with the morphological observations of others, myelin appears earliest in the spinal cord, then in the brain stem, and latest in the cerebral hemispheres. Multilamellar myelin was observed in the rat brain stem and spinal cord as early as 5 days of age. The relative proportion of the individual myelin proteins changed with myelin maturation in all areas, with the larger basic protein decreasing reciprocally with increase of the smaller basic protein. The proportion of Wolfgram protein also decreased with maturation. Larger proportions of the enzyme 2':3'-cyclic nucleotide 3'-phosphohydrolase were located in the microsomal fraction at early ages. During development the enzyme activity gradually became associated more with a fraction of a density corresponding to adult myelin, suggesting the presence of precursor membrane fragments in microsomal fractions in the early stages of myelination before compact myelin formation. A significant proportion of the total nucleotide phosphohydrolase activity of the homogenate could not be recovered in subcellular fraction at early ages, but the recovers of the enzyme increased with maturation and the activity was found more in the myelin fraction.

Full text

PDF
248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. H., Osborne J. A developmental study of the relationship between the protein components of rat CNS myelin. Neurobiology. 1973;3(2):91–112. [PubMed] [Google Scholar]
  2. Agrawal H. C., Banik N. L., Bone A. H., Davison A. N., Mitchell R. F., Spohn M. The identity of a myelin-like fraction isolated from developing brain. Biochem J. 1970 Dec;120(3):635–642. doi: 10.1042/bj1200635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agrawal H. C., Burton R. M., Fishman M. A., Mitchell R. F., Prensky A. L. Partial characterization of a new myelin protein component. J Neurochem. 1972 Sep;19(9):2083–2089. doi: 10.1111/j.1471-4159.1972.tb05118.x. [DOI] [PubMed] [Google Scholar]
  4. Agrawal H. C., Trotter J. L., Burton R. M., Mitchell R. F. Metabolic studies on myelin. Evidence for a precursor role of a myelin subfraction. Biochem J. 1974 Apr;140(1):99–109. doi: 10.1042/bj1400099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banik N. L., Davison A. N. Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain. Biochem J. 1969 Dec;115(5):1051–1062. doi: 10.1042/bj1151051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banik N. L., Davison A. N., Ramsey R. B., Scott T. Protein composition in developing human brain myelin. Dev Psychobiol. 1974 Nov;7(6):539–549. doi: 10.1002/dev.420070606. [DOI] [PubMed] [Google Scholar]
  7. Caley D. W., Maxwell D. S. An electron microscopic study of the neuroglia during postnatal development of the rat cerebrum. J Comp Neurol. 1968 May;133(1):45–70. doi: 10.1002/cne.901330104. [DOI] [PubMed] [Google Scholar]
  8. Cuzner M. L., Davison A. N. The lipid composition of rat brain myelin and subcellular fractions during development. Biochem J. 1968 Jan;106(1):29–34. doi: 10.1042/bj1060029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dalal K. B., Einstein E. R. Biochemical maturation of the central nervous system. I. Lipid changes. Brain Res. 1969 Dec;16(2):441–451. doi: 10.1016/0006-8993(69)90237-6. [DOI] [PubMed] [Google Scholar]
  10. Davison A. N., Cuzner M. L., Banik N. L., Oxberry J. Myelinogenesis in the rat brain. Nature. 1966 Dec 17;212(5068):1373–1374. doi: 10.1038/2121373a0. [DOI] [PubMed] [Google Scholar]
  11. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  12. Einstein E. R., Dalal K. B., Csejtey J. Biochemical maturation of the central nervous system. II. Protein and proteolytic enzyme changes. Brain Res. 1970 Feb 17;18(1):35–49. doi: 10.1016/0006-8993(70)90455-5. [DOI] [PubMed] [Google Scholar]
  13. Eng L. F., Chao F. C., Gerstl B., Pratt D., Tavaststjerna M. G. The maturation of human white matter myelin. Fractionation of the myelin membrane proteins. Biochemistry. 1968 Dec;7(12):4455–4465. doi: 10.1021/bi00852a042. [DOI] [PubMed] [Google Scholar]
  14. Eng L. F., Noble E. P. The maturation of rat brain myelin. Lipids. 1968 Mar;3(2):157–162. doi: 10.1007/BF02531734. [DOI] [PubMed] [Google Scholar]
  15. Fishman M. A., Agrawal H. C., Alexander A., Golterman J. Biochemical maturation of human central nervous system myelin. J Neurochem. 1975 Apr;24(4):689–694. [PubMed] [Google Scholar]
  16. Greenfield S., Norton W. T., Morell P. Quaking mouse: isolation and characterization of myelin protein. J Neurochem. 1971 Nov;18(11):2119–2128. doi: 10.1111/j.1471-4159.1971.tb05070.x. [DOI] [PubMed] [Google Scholar]
  17. JACOBSON S. SEQUENCE OF MYELINIZATION IN THE BRAIN OF THE ALBINO RAT. A. CEREBRAL CORTEX, THALAMUS AND RELATED STRUCTURES. J Comp Neurol. 1963 Aug;121:5–29. doi: 10.1002/cne.901210103. [DOI] [PubMed] [Google Scholar]
  18. Kornguth S. E., Anderson J. W., Scott G. Temporal relationship between myelinogenesis and the appearance of a basic protein in the spinal cord of the white rat. J Comp Neurol. 1966 May;127(1):1–18. doi: 10.1002/cne.901270102. [DOI] [PubMed] [Google Scholar]
  19. Kurihara T., Tsukada Y. The regional and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the central nervous system. J Neurochem. 1967 Dec;14(12):1167–1174. doi: 10.1111/j.1471-4159.1967.tb06164.x. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lees M. B., Paxman S. A. Myelin proteins from different regions of the central nervous system. J Neurochem. 1974 Oct;23(4):825–831. doi: 10.1111/j.1471-4159.1974.tb04409.x. [DOI] [PubMed] [Google Scholar]
  22. Martenson R. E., Deibler G. E., Kies M. W., McKneally S. S., Shapira R., Kibler R. F. Differences between the two myelin basic proteins of the rat central nervous system. A deletion in the smaller protein. Biochim Biophys Acta. 1972 Mar 15;263(1):193–203. doi: 10.1016/0005-2795(72)90172-9. [DOI] [PubMed] [Google Scholar]
  23. Matthieu J. M., Widmer S., Herschkowitz N. Biochemical changes in mouse brain composition during myelination. Brain Res. 1973 Jun 15;55(2):391–402. doi: 10.1016/0006-8993(73)90304-1. [DOI] [PubMed] [Google Scholar]
  24. Mehl E., Wolfgram F. Meylin types with different protein components in the same species. J Neurochem. 1969 Jul;16(7):1091–1097. doi: 10.1111/j.1471-4159.1969.tb05953.x. [DOI] [PubMed] [Google Scholar]
  25. Morell P., Greenfield S., Costantino-Ceccarini E., Wisniewski H. Changes in the protein composition of mouse brain myelin during development. J Neurochem. 1972 Nov;19(11):2545–2554. doi: 10.1111/j.1471-4159.1972.tb01313.x. [DOI] [PubMed] [Google Scholar]
  26. Morell P., Lipkind R., Greenfield S. Protein composition of myelin from brain and spinal cord of several species. Brain Res. 1973 Aug 30;58(2):510–514. doi: 10.1016/0006-8993(73)90023-1. [DOI] [PubMed] [Google Scholar]
  27. Norton W. T., Poduslo S. E. Myelination in rat brain: method of myelin isolation. J Neurochem. 1973 Oct;21(4):749–757. doi: 10.1111/j.1471-4159.1973.tb07519.x. [DOI] [PubMed] [Google Scholar]
  28. Olafson R. W., Drummond G. I., Lee J. F. Studies on 2',3'-cyclic nucleotide-3'-phosphohydrolase from brain. Can J Biochem. 1969 Oct;47(10):961–966. doi: 10.1139/o69-151. [DOI] [PubMed] [Google Scholar]
  29. Poduslo S. E. The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain. J Neurochem. 1975 Apr;24(4):647–654. [PubMed] [Google Scholar]
  30. SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sabri M. I., Bone A. H., Davison A. N. Turnover of myelin and other structural proteins in the developing rat brain. Biochem J. 1974 Sep;142(3):499–507. doi: 10.1042/bj1420499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sabri M. I., Tremblay C., Banik N. L., Scott T., Gohil K., Davison A. N. Biochemical and morphological changes in the subcellular fractions during myelination of rat brain. Biochem Soc Trans. 1975;3(2):275–276. doi: 10.1042/bst0030275. [DOI] [PubMed] [Google Scholar]
  33. Savolainen H., Palo J., Riekkinen P., Mörönen P., Brody L. E. Maturation of myelin proteins in human brain. Brain Res. 1972 Feb 25;37(2):253–263. doi: 10.1016/0006-8993(72)90670-1. [DOI] [PubMed] [Google Scholar]
  34. Smith M. E. A regional survey of myelin development: some compositional and metabolic aspects. J Lipid Res. 1973 Sep;14(5):541–551. [PubMed] [Google Scholar]
  35. Smith M. E. An in vitro system for the study of myelin synthesis. J Neurochem. 1969 Jan;16(1):83–92. doi: 10.1111/j.1471-4159.1969.tb10345.x. [DOI] [PubMed] [Google Scholar]
  36. Smith M. E., Sedgewick L. M. Studies of the mechanism of demyelination. Regional differences in myelin stability in vitro. J Neurochem. 1975 Apr;24(4):763–770. [PubMed] [Google Scholar]
  37. UZMAN L. L., RUMLEY M. K. Changes in the composition of the developing mouse brain during early myelination. J Neurochem. 1958 Dec;3(2):170–184. doi: 10.1111/j.1471-4159.1958.tb12624.x. [DOI] [PubMed] [Google Scholar]
  38. WAKSMAN B. H. Allergic encephalomyelitis in rats and rabbits pretreated with nervous tissue. J Neuropathol Exp Neurol. 1959 Jul;18(3):397–417. doi: 10.1097/00005072-195907000-00003. [DOI] [PubMed] [Google Scholar]
  39. Waehneldt T. V. Ontogenetic study of a myelin-derived fraction with 2':3'-cyclic nucleotide 3'-phosphodydrolase activity higher than that of myelin. Biochem J. 1975 Nov;151(2):435–437. doi: 10.1042/bj1510435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wolfgram F. A new proteolipid fraction of the nervous system. I. Isolation and amino acid analyses. J Neurochem. 1966 Jun;13(6):461–470. doi: 10.1111/j.1471-4159.1966.tb09859.x. [DOI] [PubMed] [Google Scholar]
  41. Zgorzalewicz B., Neuhoff V., Waehneldt T. V. Rat myelin proteins. Compositional changes in various regions of the nervous system during ontogenetic development. Neurobiology. 1974;4(5):265–276. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES