Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Feb 15;162(2):267–279. doi: 10.1042/bj1620267

Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar.

G Dalessandro, D H Northcote
PMCID: PMC1164598  PMID: 192218

Abstract

During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.

Full text

PDF
268-2

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARDINI C. E., LELOIR L. F., CHIRIBOGA J. The biosynthesis of sucrose. J Biol Chem. 1955 May;214(1):149–155. [PubMed] [Google Scholar]
  2. Cox E. L., Dickinson D. B. Hexokinase from maize endosperm and scutellum. Plant Physiol. 1973 May;51(5):960–966. doi: 10.1104/pp.51.5.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Darrow R. A., Rodstrom R. Purification and properties of uridine diphosphate galactose 4-epimerase from yeast. Biochemistry. 1968 May;7(5):1645–1654. doi: 10.1021/bi00845a005. [DOI] [PubMed] [Google Scholar]
  4. Fan D. F., Feingold D. S. Nucleoside Diphosphate-sugar 4-Epimerases I. Uridine Diphosphate Glucose 4-Epimerase of Wheat Germ. Plant Physiol. 1969 Apr;44(4):599–604. doi: 10.1104/pp.44.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fan D. F., Feingold D. S. Nucleoside diphosphate-sugar 4-epimerases. II. Uridine diphosphate arabinose 4-epimerase of wheat germ. Plant Physiol. 1970 Oct;46(4):592–595. doi: 10.1104/pp.46.4.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gainey P. A., Phelps C. F. The binding of oxidized and reduced nicotinamide--adenine dinucleotides to bovine liver uridine diphosphate glucose dehydrogenase. Biochem J. 1974 Sep;141(3):667–673. doi: 10.1042/bj1410667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaunt M. A., Maitra U. S., Ankel H. Uridine diphosphate galacturonate 4-epimerase from the blue-green alga Anabaena flos-aquae. J Biol Chem. 1974 Apr 25;249(8):2366–2372. [PubMed] [Google Scholar]
  8. Gustafson G. L., Gander J. E. Uridine diphosphate glucose pyrophosphorylase from Sorghum vulgare. Purification and kinetic properties. J Biol Chem. 1972 Mar 10;247(5):1387–1397. [PubMed] [Google Scholar]
  9. Harris P. J., Northcote D. H. Patterns of polysaccharide biosynthesis in differentiating cells of maize root-tips. Biochem J. 1970 Dec;120(3):479–491. doi: 10.1042/bj1200479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hay M., Bhaduri A. UDPGlucose 4-epimerase from Saccharomyces fragilis. Allosteric kinetics with UDP-glucose as substrate. J Biol Chem. 1975 Jun 10;250(11):4373–4375. [PubMed] [Google Scholar]
  11. Higgins T. J., Easterby J. S. Wheatgerm hexokinase: physical and active-site properties. Eur J Biochem. 1974 Jun 1;45(1):147–160. doi: 10.1111/j.1432-1033.1974.tb03539.x. [DOI] [PubMed] [Google Scholar]
  12. Hopper J. E., Dickinson D. B. Partial purification and sugar nucleotide inhibition of UDP-glucose pyrophosphorylase from Lilium longiflorum pollen. Arch Biochem Biophys. 1972 Feb;148(2):523–535. doi: 10.1016/0003-9861(72)90171-3. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MAXWELL E. S. The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J Biol Chem. 1957 Nov;229(1):139–151. [PubMed] [Google Scholar]
  15. Meunier J. C., Buc J., Ricard J. Purification and characterization of wheat germ hexokinases. FEBS Lett. 1971 Apr 12;14(1):25–28. doi: 10.1016/0014-5793(71)80266-1. [DOI] [PubMed] [Google Scholar]
  16. NEUFELD E. F., HALL C. W. INHIBITION OF UDP-D-GLUCOSE DEHYDROGENASE BY UDP-D-XYLOSE: A POSSIBLE REGULATORY MECHANISM. Biochem Biophys Res Commun. 1965 May 3;19:456–461. doi: 10.1016/0006-291x(65)90146-4. [DOI] [PubMed] [Google Scholar]
  17. Northcote D. H. Changes in the cell walls of plants during differentiation. Symp Soc Exp Biol. 1963;17:157–174. [PubMed] [Google Scholar]
  18. Northcote D. H. The synthesis and metabolic control of polysaccharides and lignin during the differentiation of plant cells. Essays Biochem. 1969;5:89–137. [PubMed] [Google Scholar]
  19. OLAITAN S. A., NORTHCOTE D. H. Polysaccharides of Chlorella pyrenoidosa. Biochem J. 1962 Mar;82:509–519. doi: 10.1042/bj0820509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STROMINGER J. L., MAPSON L. W. Uridine diphosphoglucose dehydrogenase of pea seedlings. Biochem J. 1957 Aug;66(4):567–572. doi: 10.1042/bj0660567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. THORNBER J. P., NORTHCOTE D. H. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. I. Main components. Biochem J. 1961 Dec;81:449–455. doi: 10.1042/bj0810449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. THORNBER J. P., NORTHCOTE D. H. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. II. Carbohydrate constituents of each main component. Biochem J. 1961 Dec;81:455–464. doi: 10.1042/bj0810455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TIMELL T. E. WOOD HEMICELLULOSES. I. Adv Carbohydr Chem. 1964;19:247–302. [PubMed] [Google Scholar]
  24. WILSON D. B., HOGNESS D. S. THE ENZYMES OF THE GALACTOSE OPERON IN ESCHERICHIA COLI. I. PURIFICATION AND CHARACTERIZATION OF URIDINE DIPHOSPHOGALACTOSE 4-EPIMERASE. J Biol Chem. 1964 Aug;239:2469–2481. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES