Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jun 15;164(3):487–496. doi: 10.1042/bj1640487

Studies on the mechanism of hepatic microsomal N-oxide formation. The role of cytochrome P-450 and mixed-function amine oxidase in the N-oxidation of NN-dimethylaniline.

P Hlavica, M Kehl
PMCID: PMC1164823  PMID: 407903

Abstract

Evidence is established for the existence of alternative metabolic routes of N-oxidation of NN-dimethylaniline in rabbit liver microsomal fraction. One pathway involves the participation of two types of cytochrome P-450 with different sensitivities towards heat. Both types may represent distinct haemoprotein species or two physical forms of a single pigment. The other pathway is represented by the mixed-function amine oxidase. The enzyme lacks NADPH dehydrogenase activity and is insensitive to treatment with 2-bromo-4'-nitroacetophenone and steapsin: it catalyses N-oxidation of imipramine, trimethylamine and NN-dimethylaniline in molar proportions considerably different from those of the cytochrome P-450-supported reactions. Cytochrome P-450 is estimated to account for the formation of at least 50-60% of the total NN-dimethylaniline N-oxide formed in the intact rabbit liver microsomal fraction, the remainder arising from the action of the mixed-function amine oxidase.

Full text

PDF
488

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autor A. P., Kaschnitz R. M., Heidema J. K., Coon M. J. Sedimentation and other properties of the reconstituted liver microsomal mixed-function oxidase system containing cytochrome P-450, reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, and phosphatidylcholine. Mol Pharmacol. 1973 Jan;9(1):93–104. [PubMed] [Google Scholar]
  2. Beckett A. H., Gibson G. G. Microsomal N-hydroxylation of dibenzylamine. Xenobiotica. 1975 Nov;5(11):677–686. doi: 10.3109/00498257509056137. [DOI] [PubMed] [Google Scholar]
  3. Bickel M. H., Gigon P. L. Metabolic interconversions and binding of imipramine, imipramine-N-oxide, and desmethylimipramine in rat liver slices. Xenobiotica. 1971 Nov;1(6):631–641. doi: 10.3109/00498257109112273. [DOI] [PubMed] [Google Scholar]
  4. Bickel M. H. The pharmacology and biochemistry of N-oxides. Pharmacol Rev. 1969 Dec;21(4):325–355. [PubMed] [Google Scholar]
  5. Feller D. R., Morita M., Gillette J. R. Enzymatic reduction of niridazole by rat liver microsomes. Biochem Pharmacol. 1971 Jan;20(1):203–215. doi: 10.1016/0006-2952(71)90486-2. [DOI] [PubMed] [Google Scholar]
  6. Fok A. K., Ziegler D. M. Estimation of amine oxides in the presence of hepatic microsomes. Biochem Biophys Res Commun. 1970 Nov 9;41(3):534–540. doi: 10.1016/0006-291x(70)90045-8. [DOI] [PubMed] [Google Scholar]
  7. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  8. Gorrod J. W. Differentiation of various types of biological oxidation of nitrogen in organic compounds. Chem Biol Interact. 1973 Nov;289(303):289–303. doi: 10.1016/0009-2797(73)90004-5. [DOI] [PubMed] [Google Scholar]
  9. Heymann E., Krisch K. Hemmung von Schweineleber-Carboxylesterase durch Substart-analoge Alkylierungsmittel und Aminogruppen-spezifische Reagentien. Hoppe Seylers Z Physiol Chem. 1972 May;353(5):835–838. [PubMed] [Google Scholar]
  10. Hill D. L., Laster W. R., Jr, Struck R. F. Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res. 1972 Apr;32(4):658–665. [PubMed] [Google Scholar]
  11. Hlavica P. Hepatic mixed function amine oxidase. An allosteric system. Xenobiotica. 1971 Jul-Oct;1(4):537–538. doi: 10.3109/00498257109041524. [DOI] [PubMed] [Google Scholar]
  12. Hlavica P. Interaction of oxygen and aromatic amines with hepatic microsomal mixed-function oxidase. Biochim Biophys Acta. 1972 Jul 19;273(2):318–327. doi: 10.1016/0304-4165(72)90223-1. [DOI] [PubMed] [Google Scholar]
  13. Hlavica P., Kehl M. Studies on the mechanism of hepatic microsomal N-oxide formation. I. Effect of carbon monoxide on the N-oxidation of N,N-dimethylaniline. Hoppe Seylers Z Physiol Chem. 1974 Dec;355(12):1508–1514. doi: 10.1515/bchm2.1974.355.2.1508. [DOI] [PubMed] [Google Scholar]
  14. Hlavica P., Kiese M. N-oxygenation of N-alkyl- and N,N-dialkylanilines by rabbit liver microsomes. Biochem Pharmacol. 1969 Jun;18(6):1501–1509. doi: 10.1016/0006-2952(69)90265-2. [DOI] [PubMed] [Google Scholar]
  15. Hlavica P. Studies on the active site of mixed function oxidases in rabbit liver microsomes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):212–217. doi: 10.1016/0006-291x(70)91068-5. [DOI] [PubMed] [Google Scholar]
  16. Kadlubar F. F., Morton K. C., Ziegler D. M. Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1255–1261. doi: 10.1016/0006-291x(73)91122-4. [DOI] [PubMed] [Google Scholar]
  17. Levin W., Lu A. Y., Ryan D., West S., Kuntzman R., Conney A. H. Partial purification and properties of cytochromes P-450 and P-448 from rat liver microsomes. Arch Biochem Biophys. 1972 Dec;153(2):543–553. doi: 10.1016/0003-9861(72)90373-6. [DOI] [PubMed] [Google Scholar]
  18. Levin W., Ryan D., Kuntzman R., Conney A. H. Neonatal imprinting and the turnover of microsomal cytochrome P-450 in rat liver. Mol Pharmacol. 1975 Mar;11(2):190–200. [PubMed] [Google Scholar]
  19. Masters B. S., Ziegler D. M. The distinct nature and function of NADPH-cytochrome c reductase and the NADPH-dependent mixed-function amine oxidase of porcine liver microsomes. Arch Biochem Biophys. 1971 Jul;145(1):358–364. doi: 10.1016/0003-9861(71)90048-8. [DOI] [PubMed] [Google Scholar]
  20. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  22. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  23. SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
  24. Shaw E., Ruscica J. The reactivity of His-57 in chymotrypsin to alkylation. Arch Biochem Biophys. 1971 Aug;145(2):484–489. doi: 10.1016/s0003-9861(71)80008-5. [DOI] [PubMed] [Google Scholar]
  25. Tephly T. R., Hibbeln P. The effect of cobalt chloride administration on the synthesis of hepatic microsomal cytochrome P-450. Biochem Biophys Res Commun. 1971 Feb 19;42(4):589–595. doi: 10.1016/0006-291x(71)90528-6. [DOI] [PubMed] [Google Scholar]
  26. Uehleke H. The role of cytochrome P-450 in the N-oxidation of individual amines. Drug Metab Dispos. 1973 Jan-Feb;1(1):299–313. [PubMed] [Google Scholar]
  27. White I. N., Mattocks A. R. Some factors affecting the conversion of pyrrolizidine alkaloids to N-oxides and to pyrrolic derivatives in vitro. Xenobiotica. 1971 Jul-Oct;1(4):503–505. doi: 10.3109/00498257109041518. [DOI] [PubMed] [Google Scholar]
  28. Wills E. D. Effects of vitamin K and naphthoquinones on lipid peroxide formation and oxidative demethylation by liver microsomes. Biochem Pharmacol. 1972 Jul 1;21(13):1879–1883. doi: 10.1016/0006-2952(72)90184-0. [DOI] [PubMed] [Google Scholar]
  29. Ziegler D. M., Mitchell C. H. Microsomal oxidase. IV. Properties of a mixed-function amine oxidase isolated from pig liver microsomes. Arch Biochem Biophys. 1972 May;150(1):116–125. doi: 10.1016/0003-9861(72)90017-3. [DOI] [PubMed] [Google Scholar]
  30. von Jagow R., Kampffmeyer H., Kiese M. The preparation of microsomes. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Jun 1;251(1):73–87. doi: 10.1007/BF00245731. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES