Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jun 15;164(3):727–736. doi: 10.1042/bj1640727

Comparative studies on glutamate metabolism in synpatic and non-synaptic rat brain mitochondria.

S C Dennis, J C Lai, J B Clark
PMCID: PMC1164853  PMID: 883964

Abstract

1. The apparent Michaelis constants of the glutamate dehydrogenase (EC 1.4.1.3), the glutamate-oxaloacetate transaminase (EC 2.6.1.1) and the glutaminase (EC 3.5.1.2) of rat brain mitochondria derived from non-synaptic (M) and synaptic (SM2) sources were studied. 2. The kinetics of oxygen uptake of both populations of mitochondria in the presence of a fixed concentration of malate and various concentrations of glutamate or glutamine were investigated. 3. In both mitochondrial populations, glutamate-supported respiration in the presence of 2.5 mM-malate appears to be biphasic, one system (B) having an apparent Km for glutamate of 0.25 +/- 0.04 mM (n=7) and the other (A) of 1.64 +/- 0.5 mM (n=7) [when corrected for low-Km process, Km=2.4 +/- 0.75 mM (n=7)]. Aspartate production in these experiments followed kinetics of a single process with an apparent Km for glutamate of 1.8-2 mM, approximating to the high-Km process. 4. Oxygen-uptake measurement with both mitochondrial populations in the presence of malate and various glutamate concentrations in which amino-oxyacetate was present showed kinetics approximating only to the low-Km process (apparent Km for glutamate approximately 0.2 mM). Similar experiments in the presence of glutamate alone showed kinetics approximating only to the high-Km process (apparent Km for glutamate approximately 1-1.3 mM). 5. Oxygen uptake supported by glutamine (0-3 mM) and malate (2.5 mM) by the free (M) mitochondrial population, however, showed single-phase kinetics with an apparent Km for glutamine of 0.28 mM. 6. Aspartate and 2-oxoglutarate accumulation was measured in 'free' nonsynaptic (M) brain mitochondria oxidizing various concentrations of glutamate at a fixed malate concentration. Over a 30-fold increase in glutamate concentration, the flux through the glutamate-oxaloacetate transaminase increased 7--8-fold, whereas the flux through 2-oxoglutarate dehydrogenase increased about 2.5-fold. 7. The biphasic kinetics of glutamate-supported respiration by brain mitochondria in the presence of malate are interpreted as reflecting this change in the relative fluxes through transamination and 2-oxoglutarate metabolism.

Full text

PDF
728

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALAZS R. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS. Biochem J. 1965 May;95:497–508. doi: 10.1042/bj0950497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERL S., TAKAGAKI G., CLARKE D. D., WAELSCH H. Carbon dioxide fixation in the brain. J Biol Chem. 1962 Aug;237:2570–2573. [PubMed] [Google Scholar]
  3. Balázs R., Dahl D., Harwood J. R. Subcellular distribution of enzymes of glutamate metabolism in rat brain. J Neurochem. 1966 Oct;13(10):897–905. doi: 10.1111/j.1471-4159.1966.tb10285.x. [DOI] [PubMed] [Google Scholar]
  4. Berl S., Frigyesi T. L. Comparison of cerebral regional metabolism of [14C]leucine following third ventricle and intravenous administration in the cat. J Neurochem. 1969 Mar;16(3):405–415. doi: 10.1111/j.1471-4159.1969.tb10381.x. [DOI] [PubMed] [Google Scholar]
  5. Blokhuis G. G.D., Veldstra H. Heterogeneity of mitochondria in rat brain. FEBS Lett. 1970 Dec;11(3):197–199. doi: 10.1016/0014-5793(70)80527-0. [DOI] [PubMed] [Google Scholar]
  6. Brand M. D., Chappell J. B. Glutamate and aspartate transport in rat brain mitochondria. Biochem J. 1974 May;140(2):205–210. doi: 10.1042/bj1400205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  8. Clark J. B., Nicklas W. J. The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem. 1970 Sep 25;245(18):4724–4731. [PubMed] [Google Scholar]
  9. Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dennis S. C., Land J. M., Clark J. B. Glutamate metabolism and transport in rat brain mitochondria. Biochem J. 1976 May 15;156(2):323–331. doi: 10.1042/bj1560323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fahien L. A., Strmecki M. Studies on gluconeogenic mitochondrial enzymes. II. The conversion of glutamate to alpha-ketoglutarate by bovine liver mitochondrial glutamate dehydrogenase and glutamate-oxaloacetate transaminase. Arch Biochem Biophys. 1969 Mar;130(1):456–467. doi: 10.1016/0003-9861(69)90058-7. [DOI] [PubMed] [Google Scholar]
  12. Fonnum F. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem J. 1968 Jan;106(2):401–412. doi: 10.1042/bj1060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HENSON C. P., CLELAND W. W. KINETIC STUDIES OF GLUTAMIC OXALOACETIC TRANSAMINASE ISOZYMES. Biochemistry. 1964 Mar;3:338–345. doi: 10.1021/bi00891a007. [DOI] [PubMed] [Google Scholar]
  14. HOPPER S., SEGAL H. L. COMPARATIVE PROPERTIES OF GLUTAMIC-ALANINE TRANSAMINASE FROM SEVERAL SOURCES. Arch Biochem Biophys. 1964 Jun;105:501–505. doi: 10.1016/0003-9861(64)90042-6. [DOI] [PubMed] [Google Scholar]
  15. Hoek J. B., Ernster L., de Haan E. J., Tager J. M. The nicotinamide nucleotide specificity of glutamate dehydrogenase in intact rat-liver mitochondria. Biochim Biophys Acta. 1974 Mar 26;333(3):546–559. doi: 10.1016/0005-2728(74)90138-8. [DOI] [PubMed] [Google Scholar]
  16. Katunuma N., Huzino A., Tomino I. Organ specific control of glutamine metabolism. Adv Enzyme Regul. 1967;5:55–69. doi: 10.1016/0065-2571(67)90008-8. [DOI] [PubMed] [Google Scholar]
  17. Kvamme E., Tveit B., Svenneby G. Glutaminase from pig kidney, an allosteric protein. Biochem Biophys Res Commun. 1965 Sep 8;20(5):566–572. doi: 10.1016/0006-291x(65)90436-5. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. LaNoue K. F., Bryla J., Bassett D. J. Energy-driven aspartate efflux from heart and liver mitochondria. J Biol Chem. 1974 Dec 10;249(23):7514–7521. [PubMed] [Google Scholar]
  20. LaNoue K. F., Meijer A. J., Brouwer A. Evidence for electrogenic aspartate transport in rat liver mitochondria. Arch Biochem Biophys. 1974 Apr 2;161(2):544–550. doi: 10.1016/0003-9861(74)90337-3. [DOI] [PubMed] [Google Scholar]
  21. Lai J. C., Clark J. B. Preparation and properties of mitochondria derived from synaptosomes. Biochem J. 1976 Feb 15;154(2):423–432. doi: 10.1042/bj1540423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Land J. M., Clark J. B. Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain. Biochem J. 1973 Jun;134(2):545–555. doi: 10.1042/bj1340545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGivan J. D., Bradford N. M., Chappell J. B. Adaptive changes in the capacity of systems used for the synthesis of citrulline in rat liver mitochondria in response to high- and-low-protein diets. Biochem J. 1974 Aug;142(2):359–364. doi: 10.1042/bj1420359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neidle A., van den Berg C. J., Grynbaum A. The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients. J Neurochem. 1969 Feb;16(2):225–234. doi: 10.1111/j.1471-4159.1969.tb05940.x. [DOI] [PubMed] [Google Scholar]
  25. Nicklas W. J., Clark J. B., Williamson J. R. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate. Biochem J. 1971 Jun;123(1):83–95. doi: 10.1042/bj1230083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Patel M. S., Tilghman S. M. Regulation of pyruvate metabolism via pyruvate carboxylase in rat brain mitochondria. Biochem J. 1973 Feb;132(2):185–192. doi: 10.1042/bj1320185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reijnierse G. L., Veldstra H., Van den Berg C. J. Subcellular localization of gamma-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Evidence for at least two small glutamate compartments in brain. Biochem J. 1975 Dec;152(3):469–475. doi: 10.1042/bj1520469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
  29. WALKER D. G. ON THE PRESENCE OF TWO SOLUBLE GLUCOSE-PHOSPHORYLATING ENZYMES IN ADULT LIVER AND THE DEVELOPMENT OF ONE OF THESE AFTER BIRTH. Biochim Biophys Acta. 1963 Oct 1;77:209–226. doi: 10.1016/0006-3002(63)90494-3. [DOI] [PubMed] [Google Scholar]
  30. Williamson J. R., Safer B., LaNoue K. F., Smith C. M., Walajtys E. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol. 1973;27:241–281. [PubMed] [Google Scholar]
  31. van Kempen G. M., van den Berg C. J., van der Helm H. J., Veldstra H. Intracellular localization of glutamate decarboxylase, gamma-aminobutyrate transaminase and some other enzymes in brain tissue. J Neurochem. 1965 Jul;12(7):581–588. doi: 10.1111/j.1471-4159.1965.tb04250.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES