Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jul 1;165(1):27–32. doi: 10.1042/bj1650027

Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

A R Ashton, G M Polya
PMCID: PMC1164864  PMID: 196595

Abstract

1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J. D., Barnes G. D., Maudsley D. V., Brown B. L., Etkins R. P. Factors affecting the saturation assay of cyclic AMP in biological systems. Anal Biochem. 1974 Jul;60(1):130–141. doi: 10.1016/0003-2697(74)90137-7. [DOI] [PubMed] [Google Scholar]
  2. Amrhein N., Filner P. Adenosine 3':5'-Cyclic Monophosphate in Chlamydomonas reinhardtii: Isolation and Characterization. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1099–1103. doi: 10.1073/pnas.70.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashton A. R., Polya G. M. Higher-plant cyclic nucleotide phosphodiesterases. Resolution, partial purification and properties of three phosphodiesterases from potato tuber. Biochem J. 1975 Aug;149(2):329–339. doi: 10.1042/bj1490329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beavo J. A., Rogers N. L., Crofford O. B., Hardman J. G., Sutherland E. W., Newman E. V. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol. 1970 Nov;6(6):597–603. [PubMed] [Google Scholar]
  5. Bressan R. A., Ross C. W. Attempts to detect cyclic adenosine 3':5'-monophosphate in higher plants by three assay methods. Plant Physiol. 1976 Jan;57(1):29–37. doi: 10.1104/pp.57.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elliott D. C., Murray A. W. Evidence against an involvement of cyclic nucleotides in the induction of betacyanin synthesis by cytokinins. Biochem J. 1975 Feb;146(2):333–337. doi: 10.1042/bj1460333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg N. D., Larner J., Sasko H., O'Toole A. G. Enzymic analysis of cyclic 3', 5'-AMP in mammalian tissues and urine. Anal Biochem. 1969 Apr 4;28(1):523–544. doi: 10.1016/0003-2697(69)90208-5. [DOI] [PubMed] [Google Scholar]
  8. Goldberg N. D., O'Toole A. G. Analysis of cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate. Methods Biochem Anal. 1971;20:1–39. doi: 10.1002/9780470110393.ch1. [DOI] [PubMed] [Google Scholar]
  9. Hardman J. G., Davis J. W., Sutherland E. W. Effects of some hormonal and other factors on the excretion of guanosine 3',5'-monophosphate and adenosine 3',5'-monophosphate in rat urine. J Biol Chem. 1969 Dec 10;244(23):6354–6362. [PubMed] [Google Scholar]
  10. Kessler B., Levinstein R. Adenosine 3',5'-cyclic monophosphate in higher plants: assay, distribution and age-dependency. Biochim Biophys Acta. 1974 Mar 20;343(1):156–166. doi: 10.1016/0304-4165(74)90247-5. [DOI] [PubMed] [Google Scholar]
  11. Krishna G., Weiss B., Brodie B. B. A simple, sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther. 1968 Oct;163(2):379–385. [PubMed] [Google Scholar]
  12. Kuo J. F., Greengard P. An assay method for cyclic AMP and cyclic GMP based upon their abilities to activate cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Adv Cyclic Nucleotide Res. 1972;2:41–50. [PubMed] [Google Scholar]
  13. Lin P. P. Cyclic nucleotides in higher plants? Adv Cyclic Nucleotide Res. 1974;4(0):439–460. [PubMed] [Google Scholar]
  14. Mayer S. E., Stull J. T., Wastila W. B., Thompson B. Assay of cyclic AMP by protein kinase activation. Methods Enzymol. 1974;38:66–73. doi: 10.1016/0076-6879(74)38012-3. [DOI] [PubMed] [Google Scholar]
  15. Niles R. M., Mount M. S. Failure to Detect Cyclic 3', 5'-Adenosine Monophosphate in Healthy and Crown Gall Tumorous Tissues of Vicia faba. Plant Physiol. 1974 Sep;54(3):372–373. doi: 10.1104/pp.54.3.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
  17. Peterkofsky A., Gazdar C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2324–2328. doi: 10.1073/pnas.71.6.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RANDERATH K., RANDERATH E. ION-EXCHANGE CHROMATOGRAPHY OF NUCLEOTIDES ON POLY-(ETHYLENEIMINE)-CELLULOSE THIN LAYERS. J Chromatogr. 1964 Oct;16:111–125. doi: 10.1016/s0021-9673(01)82445-6. [DOI] [PubMed] [Google Scholar]
  19. Raymond P., Narayanan A., Pradet A. Evidence for the presence of 3', 5'-cyclic AMP in plant tissues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1115–1121. doi: 10.1016/0006-291x(73)90580-9. [DOI] [PubMed] [Google Scholar]
  20. Reimann E. M., Walsh D. A., Krebs E. G. Purification and properties of rabbit skeletal muscle adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1986–1995. [PubMed] [Google Scholar]
  21. Tovey K. C., Oldham K. G., Whelan J. A. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin Chim Acta. 1974 Nov 8;56(3):221–234. doi: 10.1016/0009-8981(74)90133-8. [DOI] [PubMed] [Google Scholar]
  22. Wastila W. B., Stull J. T., Mayer S. E., Walsh D. A. Measurement of cyclic 3',5'-denosine monophosphate by the activation of skeletal muscle protein kinase. J Biol Chem. 1971 Apr 10;246(7):1996–2003. [PubMed] [Google Scholar]
  23. White A. A., Zenser T. V. Separation of cyclic 3',5'-nucleoside monophosphates from other nucleotides on aluminum oxide columns. Application to the assay of adenyl cyclase and guanyl cyclase. Anal Biochem. 1971 Jun;41(2):372–396. doi: 10.1016/0003-2697(71)90156-4. [DOI] [PubMed] [Google Scholar]
  24. Wright S. T., Price R. Protein-binding assay for cyclic AMP: possible interference by traces of trichloroacetate. Anal Biochem. 1975 Jul;67(1):342–346. doi: 10.1016/0003-2697(75)90304-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES