Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Aug 1;165(2):321–326. doi: 10.1042/bj1650321

Acetyl-coenzyme A and coenzyme A analogues. Their effects on rat brain choline acetyltransferase.

J Rossier
PMCID: PMC1164904  PMID: 921752

Abstract

Choline acetyltransferase has the same affinity for acetyl-CoA, propionyl-CoA and butyryl-CoA (Km=1.4 micron). Choline acetyltransferase may use the two latter compounds as substrate, but the longer the acyl chain the lower will be Vmax. CoA is an inhibitor (Ki=1.8 micron). The position of the 3'-phosphate is of primary importance. Desphospho-CoA is a weak inhibitor (Ki=500 micron). 5'-AMP is already an inhibitor (Ki=2500 micron). Phosphopantetheine is not an inhibitor. Dextran Blue is a potent inhibitor (Ki=0.05 micron). Choline acetyltransferase binds to hydrophobic affinity columns. Because of its affinity for nucleotides, affinity for Dextran Blue and hydrophobicity, it is proposed that it contains the 'nucleotide fold', which is a common structural domain present in several enzymes binding nucleotides.

Full text

PDF
324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERRY J. F., WHITTAKER V. P. The acyl-group specificity of choline acetylase. Biochem J. 1959 Nov;73:447–458. doi: 10.1042/bj0730447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker L. A., Mittag T. W. Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase. J Pharmacol Exp Ther. 1975 Jan;192(1):86–94. [PubMed] [Google Scholar]
  3. Chase J. F., Middleton B., Tubbs P. K. A coenzyme A analogue, desulpho-coA; preparation and effects on various enzymes. Biochem Biophys Res Commun. 1966 Apr 19;23(2):208–213. doi: 10.1016/0006-291x(66)90529-8. [DOI] [PubMed] [Google Scholar]
  4. Collier B., Barker L. A., Mittag T. W. The release of acetylated choline analogues by a sympathetic ganglion. Mol Pharmacol. 1976 Mar;12(2):340–344. [PubMed] [Google Scholar]
  5. Currier S. F., Mautner H. G. Evidence for a thiol reagent inhibiting choline acetyltransferase by reacting with the thiol group of coenzyme A forming a potent ingibitor. Biochem Biophys Res Commun. 1976 Mar 22;69(2):431–436. doi: 10.1016/0006-291x(76)90540-4. [DOI] [PubMed] [Google Scholar]
  6. Currier S. F., Mautner H. G. On the mechanism of action of choline acetyltransferase. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3355–3358. doi: 10.1073/pnas.71.9.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  9. Fonnum F. Choline acetyltransferase binding to and release from membranes. Biochem J. 1968 Sep;109(3):389–398. doi: 10.1042/bj1090389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GUENTHER W. H., MAUTNER H. G. THE SYNTHESIS OF SELENOCOENZYME A. J Am Chem Soc. 1965 Jun 20;87:2708–2716. doi: 10.1021/ja01090a031. [DOI] [PubMed] [Google Scholar]
  11. Hemsworth B. A., Smith J. C. Enzymic acetylation of the stereoisomers of alpha- and beta-methyl choline. Biochem Pharmacol. 1970 Nov;19(11):2925–2927. doi: 10.1016/0006-2952(70)90032-8. [DOI] [PubMed] [Google Scholar]
  12. Hemsworth B. A., Smith J. C. The enzymic acetylation of choline analogues. J Neurochem. 1970 Feb;17(2):171–177. doi: 10.1111/j.1471-4159.1970.tb02198.x. [DOI] [PubMed] [Google Scholar]
  13. Husain S. S., Mautner H. G. The purification of choline acetyltransferase of squid-head ganglia. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3749–3753. doi: 10.1073/pnas.70.12.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ilson D., Collier B. Triethylcholine as a precursor to a cholinergic false transmitter. Nature. 1975 Apr 17;254(5501):618–619. doi: 10.1038/254618a0. [DOI] [PubMed] [Google Scholar]
  15. Malthe-Sorenssen D. Choline acetyltransferase--evidence for acetyl transfer by a histidine residue. J Neurochem. 1976 Oct;27(4):873–881. doi: 10.1111/j.1471-4159.1976.tb05149.x. [DOI] [PubMed] [Google Scholar]
  16. Mannervik B., Sörbo B. Inhibition of choline acetyltransferase from bovine caudate nucleus by sulfhydryl reagents and reactivation of the inhibited enzyme. Biochem Pharmacol. 1970 Aug;19(8):2509–2516. doi: 10.1016/0006-2952(70)90277-7. [DOI] [PubMed] [Google Scholar]
  17. Morris D., Grewaal D. S. Halogen substituted derivatives of acetylcholine as inhibitors of choline acetyltransferase. Life Sci. 1969 May 15;8(10):511–516. doi: 10.1016/0024-3205(69)90249-5. [DOI] [PubMed] [Google Scholar]
  18. Morris D., Grewaal D. S. Human placental choline acetyltransferase. Radiometric assay, inhibition by analogues of choline and acetylcholine, and isotopic exchange between choline and acetylcholine. Eur J Biochem. 1971 Oct 26;22(4):563–572. doi: 10.1111/j.1432-1033.1971.tb01578.x. [DOI] [PubMed] [Google Scholar]
  19. REISBERG R. B. Properties and biological significance of choline acetylase. Yale J Biol Med. 1957 Feb;29(4):403–435. [PMC free article] [PubMed] [Google Scholar]
  20. Roskoski R., Jr Choline acetyltransferase and acetylcholinesterase: evidence for essential histidine residues. Biochemistry. 1974 Dec 3;13(25):5141–5144. doi: 10.1021/bi00722a014. [DOI] [PubMed] [Google Scholar]
  21. Roskoski R., Jr, Lim C. T., Roskoski L. M. Human brain and placental choline acetyltransferase: purification and properties. Biochemistry. 1975 Nov 18;14(23):5105–5110. doi: 10.1021/bi00694a013. [DOI] [PubMed] [Google Scholar]
  22. Rossier J. Purification of rat brain choline acetyltransferase. J Neurochem. 1976 Mar;26(3):543–548. doi: 10.1111/j.1471-4159.1976.tb01509.x. [DOI] [PubMed] [Google Scholar]
  23. Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
  24. Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
  25. Smith D. J., Maggio E. T., Kenyon G. L. Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. Biochemistry. 1975 Feb 25;14(4):766–771. doi: 10.1021/bi00675a019. [DOI] [PubMed] [Google Scholar]
  26. Spantidakis Y., Rossier J., Benda P. Influence des ions chlore sur les paramètres cinétiques de la choline acétyltransférase du cerveau de rat. C R Acad Sci Hebd Seances Acad Sci D. 1976 May 3;282(17):1621–1624. [PubMed] [Google Scholar]
  27. Thompson S. T., Cass K. H., Stellwagen E. Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci U S A. 1975 Feb;72(2):669–672. doi: 10.1073/pnas.72.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White H. L., Cavallito C. J. Inhibition of bacterial and mammalian choline acetyltransferases by styrylpyridine analogues. J Neurochem. 1970 Nov;17(11):1579–1589. doi: 10.1111/j.1471-4159.1970.tb03728.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES