Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Sep 15;166(3):521–529. doi: 10.1042/bj1660521

Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Effect of age, sex and methionine administration on the metabolism of S-adenosylmethionine, S-adenosylhomocysteine and polyamines

Terho O Eloranta 1
PMCID: PMC1165036  PMID: 597242

Abstract

The tissue distribution of S-adenosylmethionine, S-adenosylhomocysteine, methionine adenosyltransferase and S-adenosylhomocysteine hydrolase was explored in the rat. Also the effects of methionine administration on the accumulation of S-adenosylmethionine, S-adenosylhomocysteine and polyamines were studied in rat liver, brain and kidney. The tissue distribution of S-adenosylmethionine, S-adenosylhomocysteine, methionine adenosyltransferase and S-adenosylhomocysteine hydrolase was similar in both sexes, and was only slightly changed with age. The specific activity of S-adenosylhomocysteine hydrolase greatly exceeded that of methionine adenosyltransferase, and the concentration of S-adenosylmethionine was higher than that of S-adenosylhomocysteine in all tissues examined. However, the hepatic S-adenosylmethionine/S-adenosylhomocysteine ratio was dependent on food supply and on the age of the animal. No correlation was noticed between the activity of methionine adenosyltransferase and the concentrations of the adenosyl compounds in different tissues. Intraperitoneal administration of methionine resulted in a profound but transient increase in the hepatic concentrations of S-adenosylmethionine and S-adenosylhomocysteine. The concentration of S-adenosylmethionine was elevated also in the brain during the first 2h after methionine injection. The rise of S-adenosylmethionine concentration after methionine treatment could be diminished by simultaneous glycine administration. The results support the view that the rate-limiting factor of S-adenosylmethionine synthesis is the tissue concentration of methionine. They further suggest that glycine N-methyltransferase may have a regulatory role in the utilization of S-adenosylmethionine in the liver.

Full text

PDF
522

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALDESSARINI R. J., KOPIN I. J. ASSAY OF TISSUE LEVELS OF S-ADENOSYLMETHIONINE. Anal Biochem. 1963 Sep;6:289–292. doi: 10.1016/0003-2697(63)90139-8. [DOI] [PubMed] [Google Scholar]
  2. Baldessarini R. J. Biological transmethylation involving S-adenosylmethionine: development of assay methods and implications for neuropsychiatry. Int Rev Neurobiol. 1975;18:41–67. doi: 10.1016/s0074-7742(08)60033-1. [DOI] [PubMed] [Google Scholar]
  3. Cantoni G. L. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. [DOI] [PubMed] [Google Scholar]
  4. DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
  5. Duerre J. A., Miller C. H., Reams G. G. Metabolism of S-adenosyl-L-homocysteine in vivo by the rat. J Biol Chem. 1969 Jan 10;244(1):107–111. [PubMed] [Google Scholar]
  6. Eloranta T. O., Kajander E. O., Raina A. M. A new method for the assay of tissue. S-adenosylhomocysteine and S-adenosylmethione. Effect of pyridoxine deficiency on the metabolism of S-adenosylhomocysteine, S-adenosylmethionine and polyamines in rat liver. Biochem J. 1976 Nov 15;160(2):287–294. doi: 10.1042/bj1600287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eloranta T. O., Mäenpä P. H., Raina A. M. Synthesis of hepatic polyamines, ribonucleic acid and S-adenosylmethionine in normal and oestrogen-treated chicks. Biochem J. 1976 Jan 15;154(1):95–103. doi: 10.1042/bj1540095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finkelstein J. D., Harris B. Methionine metabolism in mammals: S-adenosylhomocysteine hydrolase in rat intestinal mucosa. Arch Biochem Biophys. 1975 Nov;171(1):282–286. doi: 10.1016/0003-9861(75)90034-x. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein J. D., Harris B. Methionine metabolism in mammals: synthesis of S-adenosylhomocysteine in rat tissues. Arch Biochem Biophys. 1973 Nov;159(1):160–165. doi: 10.1016/0003-9861(73)90440-2. [DOI] [PubMed] [Google Scholar]
  10. Finkelstein J. D. Methionine metabolism in mammals: the biochemical basis for homocystinuria. Metabolism. 1974 Apr;23(4):387–398. doi: 10.1016/0026-0495(74)90057-2. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein J. D., Mudd S. H. Trans-sulfuration in mammals. The methionine-sparing effect of cystine. J Biol Chem. 1967 Mar 10;242(5):873–880. [PubMed] [Google Scholar]
  12. Fuller R. W. The rise and fall of MTHF as a methyl donor in biogenic amine metabolism. Life Sci. 1976 Sep 1;19(5):625–628. doi: 10.1016/0024-3205(76)90157-0. [DOI] [PubMed] [Google Scholar]
  13. Hoffman J. A rapid liquid chromatographic determination of S-adenosylhomocysteine in subgram amounts of tissue. Anal Biochem. 1975 Oct;68(2):522–530. doi: 10.1016/0003-2697(75)90647-8. [DOI] [PubMed] [Google Scholar]
  14. Hölttä E., Raina A. Stimulation of ornithine decarboxylase and nuclear RNA polymerase activity in rat liver by glucagon and dibutyryl cyclic amp. Acta Endocrinol (Copenh) 1973 Aug;73(4):794–800. doi: 10.1530/acta.0.0730794. [DOI] [PubMed] [Google Scholar]
  15. Kajander O., Eloranta T., Raina A. A sensitive isotopic assay method for S-adenosylhomocysteine hydrolase. Some properties of the enzyme from rat liver. Biochim Biophys Acta. 1976 Jul 8;438(2):522–531. doi: 10.1016/0005-2744(76)90268-0. [DOI] [PubMed] [Google Scholar]
  16. Kerr S. J. Competing methyltransferase systems. J Biol Chem. 1972 Jul 10;247(13):4248–4252. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lombardini J. B., Talalay P. Effect of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues. Mol Pharmacol. 1973 Jul;9(4):542–560. [PubMed] [Google Scholar]
  19. Lombardini J. B., Talalay P. Formation, functions and regulatory importance of S-adenosyl-L-methionine. Adv Enzyme Regul. 1970;9:349–384. doi: 10.1016/s0065-2571(71)80054-7. [DOI] [PubMed] [Google Scholar]
  20. McKenzie R. M., Gholson R. K. A simple assay for methionine adenosyltransferase using cation exchange paper and liquid scintillation spectrometry. Anal Biochem. 1973 Jun;53(2):384–391. doi: 10.1016/0003-2697(73)90084-5. [DOI] [PubMed] [Google Scholar]
  21. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  22. NATORI Y. Studies on ethionine. VI. Sex-dependent behavior of methionine and ethionine in rats. J Biol Chem. 1963 Jun;238:2075–2080. [PubMed] [Google Scholar]
  23. Pegg A. E., Williams-Ashman H. G. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968 Jul;108(4):533–539. doi: 10.1042/bj1080533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  25. Raina A., Jansen M., Cohen S. S. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. J Bacteriol. 1967 Nov;94(5):1684–1696. doi: 10.1128/jb.94.5.1684-1696.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raina A., Jänne J. Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol. 1975 Jun;53(3):121–147. [PubMed] [Google Scholar]
  27. Salvatore F., Utili R., Zappia V., Shapiro S. K. Quantitative analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues. Anal Biochem. 1971 May;41(1):16–28. doi: 10.1016/0003-2697(71)90187-4. [DOI] [PubMed] [Google Scholar]
  28. Schlenk F., Zydek C. R. The action of adenosine deaminase on S-adenosylhomocysteine and related compounds. Biochem Biophys Res Commun. 1968 May 10;31(3):427–432. doi: 10.1016/0006-291x(68)90494-4. [DOI] [PubMed] [Google Scholar]
  29. Sheid B., Bilik E. S-adenosylmethionine synthetase activity in some normal rat tissues and transplantable hepatomas. Cancer Res. 1968 Dec;28(12):2512–2515. [PubMed] [Google Scholar]
  30. Tudball N., Griffiths R. Biochemical changes in the brain of experimental animals in response to elevated plasma homocystine and methionine. J Neurochem. 1976 Jun;26(6):1149–1154. doi: 10.1111/j.1471-4159.1976.tb06999.x. [DOI] [PubMed] [Google Scholar]
  31. Uerre J. A., Miller C. H. Preparation of L-homocysteine from L-homocysteine thiolactone. Anal Biochem. 1966 Nov;17(2):310–315. doi: 10.1016/0003-2697(66)90209-0. [DOI] [PubMed] [Google Scholar]
  32. Walker R. D., Duerre J. A. S-adenosylhomocysteine metabolism in various species. Can J Biochem. 1975 Mar;53(3):312–319. doi: 10.1139/o75-044. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES