Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jan;146(1):67–77. doi: 10.1042/bj1460067

Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ.

N Oshino, D Jamieson, T Sugano, B Chance
PMCID: PMC1165276  PMID: 1147905

Abstract

The spectrophotometric determination of the catalase-H2O2 intermediate (Compound I) was extended to the liver in situ in anaesthetized rats. The rate of H2O2 production was determined for the liver in situ with endogenous substrates, and in the presence of excess of glycollate. Glycollate infusion doubled H2O2 production rate in the liver of air-breathing rats, and caused a fourfold increase when rats breathed O2 at 1 times 10(5) Pa. Hyperbaric O2 up to 6 times 10(5) Pa did not increase H2O2 generation supported by endogenous substrates, nor did it increase H2O2 production above that produced by 1 times 10(5) Pa O2 in glycollate-supplemented rats. The rates of ethanol oxidation via hepatic catalase and via alcohol dehydrogenase in the whole body were separately measured. The contribution of hepatic catalase to ethanol oxidation was found to be approx. 10 percent in endogenous conditions and increased to 30 percent or more of the total ethanol oxidation in rats supplemented with glycolate.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bücher T., Brauser B., Conze A., Klein F., Langguth O., Sies H. State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem. 1972 May 23;27(2):301–317. doi: 10.1111/j.1432-1033.1972.tb01840.x. [DOI] [PubMed] [Google Scholar]
  3. Chance B., Oshino N. Analysis of the catalase--hydrogen peroxide intermediate in coupled oxidations. Biochem J. 1973 Mar;131(3):564–567. doi: 10.1042/bj1310564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chance B., Oshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J. 1971 Apr;122(2):225–233. doi: 10.1042/bj1220225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chance B., Salkovitz I. A., Kovach A. G. Kinetics of mitochondrial flavoprotein and pyridine nucleotide in perfused heart. Am J Physiol. 1972 Jul;223(1):207–218. doi: 10.1152/ajplegacy.1972.223.1.207. [DOI] [PubMed] [Google Scholar]
  6. Dahlbom R., Tolf B. R., Akeson A., Lundquist G., Theorell H. On the inhibitory power of some further pyrazole derivatives of horse liver alcohol dehydrogenase. Biochem Biophys Res Commun. 1974 Apr 8;57(3):549–553. doi: 10.1016/0006-291x(74)90581-6. [DOI] [PubMed] [Google Scholar]
  7. Dalziel K., Dickinson F. M. The kinetics and mechanism of liver alcohol dehydrogenase with primary and secondary alcohols as substrates. Biochem J. 1966 Jul;100(1):34–46. doi: 10.1042/bj1000034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickinson F. M., Dalziel K. The specificities and configurations of ternary complexes of yeast and liver alcohol dehydrogenases. Biochem J. 1967 Jul;104(1):165–172. doi: 10.1042/bj1040165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon M. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins. Biochim Biophys Acta. 1971 Mar 2;226(2):269–284. doi: 10.1016/0005-2728(71)90094-6. [DOI] [PubMed] [Google Scholar]
  10. Eggleston L. V., Krebs H. A. Regulation of the pentose phosphate cycle. Biochem J. 1974 Mar;138(3):425–435. doi: 10.1042/bj1380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fong K. L., McCay P. B., Poyer J. L., Keele B. B., Misra H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973 Nov 25;248(22):7792–7797. [PubMed] [Google Scholar]
  12. Hawkins R. D., Kalant H. The metabolism of ethanol and its metabolic effects. Pharmacol Rev. 1972 Mar;24(1):67–157. [PubMed] [Google Scholar]
  13. JOBSIS F. F. Spectrophotometric studies on intact muscle. I. Components of the respiratory chain. J Gen Physiol. 1963 May;46:905–928. doi: 10.1085/jgp.46.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JOBSIS F. F. Spectrophotometric studies on intact muscle. II. Recovery from contractile activity. J Gen Physiol. 1963 May;46:929–969. doi: 10.1085/jgp.46.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jerrett S. A., Jefferson D., Mengel C. E. Seizures, H 2 O 2 formation and lipid peroxides in brain during exposure to oxygen under high pressure. Aerosp Med. 1973 Jan;44(1):40–44. [PubMed] [Google Scholar]
  16. Johnson W. P., Jefferson D., Mengel C. E. In vivo formation of H2O2 in red cells during exposure to hyperoxia. J Clin Invest. 1972 Aug;51(8):2211–2213. doi: 10.1172/JCI107029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindros K. O., Vihma R., Forsander O. A. Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver. Biochem J. 1972 Feb;126(4):945–952. doi: 10.1042/bj1260945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loschen G., Azzi A., Richter C., Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974 May 15;42(1):68–72. doi: 10.1016/0014-5793(74)80281-4. [DOI] [PubMed] [Google Scholar]
  19. Mannering G. J., Van Harken D. R., Makar A. B., Tephly T. R., Watkins W. D., Goodman J. I. Role of the intracellular distribution of hepatic catalase in the peroxidative oxidation of methanol. Ann N Y Acad Sci. 1969 Dec 19;168(2):265–280. doi: 10.1111/j.1749-6632.1969.tb43114.x. [DOI] [PubMed] [Google Scholar]
  20. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  21. Oshino N., Chance B., Sies H., Bücher T. The role of H 2 O 2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys. 1973 Jan;154(1):117–131. doi: 10.1016/0003-9861(73)90040-4. [DOI] [PubMed] [Google Scholar]
  22. Oshino N., Jamieson D., Chance B. The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver. Biochem J. 1975 Jan;146(1):53–65. doi: 10.1042/bj1460053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oshino N., Oshino R., Chance B. The characteristics of the "peroxidatic" reaction of catalase in ethanol oxidation. Biochem J. 1973 Mar;131(3):555–563. doi: 10.1042/bj1310555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. PRICE V. E., STERLING W. R., TARANTOLA V. A., HARTLEY R. W., Jr, RECHCIGL M., Jr The kinetics of catalase synthesis and destruction in vivo. J Biol Chem. 1962 Nov;237:3468–3475. [PubMed] [Google Scholar]
  25. RAMIREZ J. Oxidation-reduction changes of cytochromes following stimulation of amphibian cardiac muscle. J Physiol. 1959 Jun 23;147(1):14–32. doi: 10.1113/jphysiol.1959.sp006218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sies H., Bücher T., Oshino N., Chance B. Heme occupancy of catalase in hemoglobin-free perfused rat liver and of isolated rat liver catalase. Arch Biochem Biophys. 1973 Jan;154(1):106–116. doi: 10.1016/0003-9861(73)90039-8. [DOI] [PubMed] [Google Scholar]
  27. Sies H., Chance B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 1970 Dec;11(3):172–176. doi: 10.1016/0014-5793(70)80521-x. [DOI] [PubMed] [Google Scholar]
  28. Theorell H., Chance B., Yonetani T., Oshino N. The combustion of alcohol and its inhibition by 4-methyl-pyrazole in perfused rat livers. Arch Biochem Biophys. 1972 Aug;151(2):434–444. doi: 10.1016/0003-9861(72)90519-x. [DOI] [PubMed] [Google Scholar]
  29. Videla L., Bernstein J., Israel Y. Metabolic alterations produced in the liver by chronic ethanol administration. Increased oxidative capacity. Biochem J. 1973 Jun;134(2):507–514. doi: 10.1042/bj1340507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williamson J. R., Jamieson D. Metabolic effects of epinephrine in the perfused rat heart. I. Comparison of intracellular redox states, tissue pO2 and force of contraction. Mol Pharmacol. 1966 May;2(3):191–205. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES