Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Aug;149(2):447–461. doi: 10.1042/bj1490447

Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase.

R J McIntyre, P F Vaughan
PMCID: PMC1165638  PMID: 170916

Abstract

1. A spectrophotometric assay is described that enables the hydroxylation of p-coumaric acid to caffeic acid, catalysed by spinach-beet phenolase, to be followed continuously. 2. Initial-velocity and inhibitor studies indicate that the order of substrate addition is oxygen, p-coumaric acid and electron donor, with an irreversible step separating the binding of each substrate. 3. Caffeic acid is most likely to act as electron donor at the active site; other electron donors, such as ascorbic acid, NADH and dimethyltetrahydropteridine, function mainly to recycle cofactor amounts of caffeic acid. 4. A reaction scheme, consistent with these data, is proposed.

Full text

PDF
448

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTT V. S., HALLAWAY M. The catalysis of ascorbate oxidation by ionic copper and its complexes. Arch Biochem Biophys. 1961 Jan;92:24–32. doi: 10.1016/0003-9861(61)90213-2. [DOI] [PubMed] [Google Scholar]
  2. Brady F. O., Monaco M. E., Forman H. J., Schutz G., Feigelson P. On the role of copper in activation of and catalysis by tryptophan-2,3-dioxygenase. J Biol Chem. 1972 Dec 25;247(24):7915–7922. [PubMed] [Google Scholar]
  3. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  4. Duckworth H. W., Coleman J. E. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem. 1970 Apr 10;245(7):1613–1625. [PubMed] [Google Scholar]
  5. Fromm H. J. The use of competitive inhibitors in studying the mechanism of action of some enzyme systems utilizing three substrates. Biochim Biophys Acta. 1967 Jul 11;139(2):221–230. doi: 10.1016/0005-2744(67)90026-5. [DOI] [PubMed] [Google Scholar]
  6. Gregory R. P., Bendall D. S. The purification and some properties of the polyphenol oxidase from tea (Camellia sinensis L.). Biochem J. 1966 Dec;101(3):569–581. doi: 10.1042/bj1010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jolley R. L., Jr, Evans L. H., Makino N., Mason H. S. Oxytyrosinase. J Biol Chem. 1974 Jan 25;249(2):335–345. [PubMed] [Google Scholar]
  8. Kendal L. P. The action of tyrosinase on monophenols. Biochem J. 1949;44(4):442–454. doi: 10.1042/bj0440442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MASON H. S. Comparative biochemistry of the phenolase complex. Adv Enzymol Relat Subj Biochem. 1955;16:105–184. doi: 10.1002/9780470122617.ch3. [DOI] [PubMed] [Google Scholar]
  10. McFarlane W. D. Application of the sodium diethyldithiocarbamate reaction to the micro-colorimetric determination of copper in organic substances. Biochem J. 1932;26(4):1022–1033. doi: 10.1042/bj0261022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nielsen K. H. Rat liver phenylalanine hydroxylase. A method for the measurement of activity, with particular reference to the distinctive features of the enzyme and the pteridine cofactor. Eur J Biochem. 1969 Jan;7(3):360–369. doi: 10.1111/j.1432-1033.1969.tb19617.x. [DOI] [PubMed] [Google Scholar]
  12. Ogasawara N., Gander J. E., Henderson L. M. Purification and properties of 3-hydroxyanthranilate oxygenase from beef kidney. J Biol Chem. 1966 Feb 10;241(3):613–619. [PubMed] [Google Scholar]
  13. Pierpoint W. S. The enzymic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochem J. 1966 Feb;98(2):567–580. doi: 10.1042/bj0980567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pomerantz S. H., Warner M. C. 3,4-dihydroxy-L-phenylalanine as the tyrosinase cofactor. Occurrence in melanoma and binding constant. J Biol Chem. 1967 Nov 25;242(22):5308–5314. [PubMed] [Google Scholar]
  15. Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
  16. Rudolph F. B., Purich D. L., Fromm H. J. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties, and kinetic studies of the enzyme. J Biol Chem. 1968 Nov 10;243(21):5539–5545. [PubMed] [Google Scholar]
  17. Vaughan P. F., Butt V. S. The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach beet (Beta vulgaris L.). Biochem J. 1970 Aug;119(1):89–94. doi: 10.1042/bj1190089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vaughan P. F., Butt V. S. The expression of catechol oxidase activity during the hydroxylation of p-coumaric acid by spinach-beet phenolase. Biochem J. 1972 May;127(4):641–647. doi: 10.1042/bj1270641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vaughan P. F., Butt V. S. The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet (Beta vulgaris L.). Biochem J. 1969 Jun;113(1):109–115. doi: 10.1042/bj1130109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaughan P. F., Butt V. S. The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet (Beta vulgaris L.). Biochem J. 1969 Jun;113(1):109–115. doi: 10.1042/bj1130109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES