Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Oct;135(2):257–263. doi: 10.1042/bj1350257

Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction*

Z Zaman 1, P M Jordan 1, M Akhtar 1
PMCID: PMC1165818  PMID: 4543543

Abstract

1. Two mechanisms for the biosynthesis of 5-aminolaevulinate from glycine and succinyl-CoA (3-carboxypropionyl-CoA) are considered. One of the mechanisms involves the retention of both the C-2 H atoms of glycine during the synthesis of 5-aminolaevulinate, whereas the other predicts the retention of only one of the C-2 H atoms of glycine. 2. Highly purified 5-aminolaevulinate synthetase from Rhodopseudomonas spheroides was used to show that the C-2 H atom of glycine with R configuration is specifically removed during the biosynthesis of 5-aminolaevulinate. 3. The mechanism of the condensation therefore differs from the analogous reaction of the biosynthesis of sphinganine from palmitoyl-CoA and serine, in which the C-2 H of serine is retained (Wiess, 1963).

Full text

PDF
262

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., el-Obeid H. A. Inactivation of serine transhydroxymethylase and threonine aldolase activities. Biochim Biophys Acta. 1972 Mar 8;258(3):791–799. doi: 10.1016/0005-2744(72)90180-5. [DOI] [PubMed] [Google Scholar]
  2. BURNHAM B. F., PIERCE W. S., WILLIAMS K. R., BOYER M. H., KIRBY C. K. delta-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J. 1963 Jun;87:462–472. doi: 10.1042/bj0870462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jordan P. M., Akhtar M. The mechanism of action of serine transhydroxymethylase. Biochem J. 1970 Jan;116(2):277–286. doi: 10.1042/bj1160277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KIKUCHI G., KUMAR A., TALMAGE P., SHEMIN D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem. 1958 Nov;233(5):1214–1219. [PubMed] [Google Scholar]
  5. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  6. NEUBERGER A. Aspects of the metabolism of glycine and of porphyrins. Biochem J. 1961 Jan;78:1–10. doi: 10.1042/bj0780001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Tuboi S., Kim H. J., Kikuchi G. Differential induction of fraction I and fraction II of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides under various incubation conditions. Arch Biochem Biophys. 1970 May;138(1):155–159. doi: 10.1016/0003-9861(70)90294-8. [DOI] [PubMed] [Google Scholar]
  8. Tuboi S., Kim H. J., Kikuchi G. Occurrence and properes of two types of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides. Arch Biochem Biophys. 1970 May;138(1):147–154. doi: 10.1016/0003-9861(70)90293-6. [DOI] [PubMed] [Google Scholar]
  9. WEISS B. The biosynthesis of sphingosine. I. A study of the reaction with tritium-labeled serine. J Biol Chem. 1963 Jun;238:1953–1959. [PubMed] [Google Scholar]
  10. Warnick G. R., Burnham B. F. Regulation of prophyrin biosynthesis. Purification and characterization of -aminolevulinic acid synthase. J Biol Chem. 1971 Nov 25;246(22):6880–6885. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES