Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Dec;135(4):729–733. doi: 10.1042/bj1350729

Conformation of the mucopolysaccharides. X-ray fibre diffraction of heparin

I A Nieduszynski 1, E D T Atkins 1
PMCID: PMC1165889  PMID: 4273186

Abstract

Oriented films of the sodium salt of heparin crystallize in a triclinic unit cell. The X-ray diffraction results favour a tetrasaccharide covalent repeating sequence but the measured molecular repeat of 1.59nm is inconsistent with all α-(1→4)(1ax→4eq)-glycosidic linkages as generally accepted. Three models are proposed for the molecular shape of heparin, which depend on the chair conformation adopted by the hexuronic acid moieties. Model I has both uronic acids in the C1 chair form, model II has one uronic acid in each of the C1 and 1C chairs and model III has both in the 1C chair form. The merits of these models are discussed.

Full text

PDF
733

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. S., Campbell J. W., Harding M. M., Rees D. A., Samuel J. W. X-ray diffraction studies of polysaccharide sulphates: double helix models for k- and l-carrageenans. J Mol Biol. 1969 Oct 14;45(1):85–99. doi: 10.1016/0022-2836(69)90211-3. [DOI] [PubMed] [Google Scholar]
  2. Atkins E. D., Laurent T. C. X-ray-diffraction patterns from chondroitin 4-sulphate, dermatan sulphate and heparan sulphate. Biochem J. 1973 Jul;133(3):605–606. doi: 10.1042/bj1330605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkins E. D., Phelps C. F., Sheehan J. K. The conformation of the mucopolysaccharides. Hyaluronates. Biochem J. 1972 Aug;128(5):1255–1263. doi: 10.1042/bj1281255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CIFONELLI J. A., DORFMAN A. The uronic acid of heparin. Biochem Biophys Res Commun. 1962 Feb 20;7:41–45. doi: 10.1016/0006-291x(62)90141-9. [DOI] [PubMed] [Google Scholar]
  5. Charles A. F., Todd A. R. Observations on the structure of the barium salt of heparin. Biochem J. 1940 Jan;34(1):112–118. doi: 10.1042/bj0340112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DANISHEFSKY I., STEINER H. INVESTIGATIONS ON THE CHEMISTRY OF HEPARIN. V. DISACCHARIDES OBTAINED AFTER PARTIAL HYDROLYSIS. Biochim Biophys Acta. 1965 Mar 1;101:37–45. doi: 10.1016/0926-6534(65)90028-x. [DOI] [PubMed] [Google Scholar]
  7. Helting T., Lindahl U. Occurrence and biosynthesis of beta-glucuronidic linkages in heparin. J Biol Chem. 1971 Sep 10;246(17):5442–5447. [PubMed] [Google Scholar]
  8. Isaac D. H., Atkins E. D. Molecular conformations of chondroitin-4-sulphate. Nat New Biol. 1973 Aug 22;244(138):252–253. doi: 10.1038/newbio244252a0. [DOI] [PubMed] [Google Scholar]
  9. LINDAHL U., CIFONELLI J. A., LINDAHL B., RODEN L. THE ROLE OF SERINE IN THE LINKAGE OF HEPARIN TO PROTEIN. J Biol Chem. 1965 Jul;240:2817–2820. [PubMed] [Google Scholar]
  10. Lindahl U., Axelsson O. Identification of iduronic acid as the major sulfated uronic acid of heparin. J Biol Chem. 1971 Jan 10;246(1):74–82. [PubMed] [Google Scholar]
  11. Lindahl U., Bäckström G., Malmström A., Fransson L. A. Biosynthesis of L-iduronic acid in heparin: epimerization of D-glucuronic acid on the polymer level. Biochem Biophys Res Commun. 1972 Jan 31;46(2):985–991. doi: 10.1016/s0006-291x(72)80238-9. [DOI] [PubMed] [Google Scholar]
  12. Linker A., Hovingh P. Isolation and characterization of oligosaccharides obtained from heparin by the action of heparinase. Biochemistry. 1972 Feb 15;11(4):563–568. doi: 10.1021/bi00754a013. [DOI] [PubMed] [Google Scholar]
  13. RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES