Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Jun;139(3):535–545. doi: 10.1042/bj1390535

Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm

G B Fincher , W H Sawyer *, B A Stone †,§
PMCID: PMC1166318  PMID: 4850989

Abstract

1. An arabinogalactan-peptide from wheat endosperm was studied by using physicochemical techniques and some aspects of its chemical structure were determined. 2. The arabinogalactan-peptide is a non-associating, polydisperse macromolecule ([unk]=22000) which exhibits only minor non-ideal effects in aqueous solution. 3. Examination of the products of partial acid hydrolysis of the polysaccharide component showed that arabinose is present in the α-l-arabinofuranosyl configuration, and i.r.-absorption spectroscopy and optical-rotation studies suggest that the d-galactopyranose residues are linked by glycosidic linkages in the β-anomeric configuration. 4. The arabinogalactan is linked to a peptide which represents 8% (w/w) of the arabinogalactan-peptide and which may be present as a molecular core. Partial degradation of the polymer by successive treatment with oxalic acid and NaOH showed that the linkage between polysaccharide and peptide involves galactose and hydroxyproline residues and is glycosidic in nature. A tentative model is proposed for the structure of the wheat endosperm arabinogalactan-peptide. 5. The subcellular location and function of the arabinogalactan-peptide is discussed in relation to previous work with related molecules.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASPINALL G. O. Structural chemistry of the hemicelluloses. Adv Carbohydr Chem. 1959;14:429–468. doi: 10.1016/s0096-5332(08)60228-3. [DOI] [PubMed] [Google Scholar]
  2. BARKER S. A., BOURNE E. J., WHIFFEN D. H. Use of infrared analysis in the determination of carbohydrate structure. Methods Biochem Anal. 1956;3:213–245. doi: 10.1002/9780470110195.ch7. [DOI] [PubMed] [Google Scholar]
  3. BARRETT A. J., NORTHCOTE D. H. APPLE FRUIT PECTIC SUBSTANCES. Biochem J. 1965 Mar;94:617–627. doi: 10.1042/bj0940617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland R. Distribution and metabolism of protein-bound hydroxyproline in an elongating tissue, the Avena coleoptile. Plant Physiol. 1968 Jun;43(6):865–870. doi: 10.1104/pp.43.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Estrada-Parra S., Gómez I. Immunochemistry of type XIV pneumococcus capsular polysaccharide oxidized by D-galactose oxidase. Immunochemistry. 1972 Nov;9(11):1095–1101. doi: 10.1016/0019-2791(72)90079-1. [DOI] [PubMed] [Google Scholar]
  6. Hajra A. K., Bowen D. M., Kishimoto Y., Radin N. S. Cerebroside galactosidase of brain. J Lipid Res. 1966 May;7(3):379–386. [PubMed] [Google Scholar]
  7. Heath M. F., Northcote D. H. Glycoprotein of the wall of sycamore tissue-culture cells. Biochem J. 1971 Dec;125(4):953–961. doi: 10.1042/bj1250953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. IMMERS J. A MICROCHROMATOGRAPHY FOR QUANTITATIVE ESTIMATION OF SUGARS USING A PAPER STRIP AS A PARTITION SUPPORT. J Chromatogr. 1964 Jul;15:252–256. doi: 10.1016/s0021-9673(01)82778-3. [DOI] [PubMed] [Google Scholar]
  9. LEACH A. A. Notes on a modification of the Neuman and Logan method for the determination of the hydroxyproline. Biochem J. 1960 Jan;74:70–71. doi: 10.1042/bj0740070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lamport D. T., Katona L., Roerig S. Galactosylserine in extensin. Biochem J. 1973 May;133(1):125–132. doi: 10.1042/bj1330125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamport D. T., Miller D. H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiol. 1971 Oct;48(4):454–456. doi: 10.1104/pp.48.4.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamport D. T. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry. 1969 Mar;8(3):1155–1163. doi: 10.1021/bi00831a049. [DOI] [PubMed] [Google Scholar]
  14. Mashburn T. A., Jr, Hoffman P. Automated analysis of polysaccharide and protein in cartilage. Anal Biochem. 1970 Jul;36(1):213–221. doi: 10.1016/0003-2697(70)90350-7. [DOI] [PubMed] [Google Scholar]
  15. Miller D. H., Lamport D. T., Miller M. Hydroxyproline heterooligosaccharides in Chlamydomonas. Science. 1972 May 26;176(4037):918–920. doi: 10.1126/science.176.4037.918. [DOI] [PubMed] [Google Scholar]
  16. NEUMAN R. E., LOGAN M. A. The determination of hydroxyproline. J Biol Chem. 1950 May;184(1):299–306. [PubMed] [Google Scholar]
  17. Pardoe G. I., Uhlenbruck G. Characteristics of antigenic determinants of intact cell surfaces. J Med Lab Technol. 1970 Apr;27(2):249–263. [PubMed] [Google Scholar]
  18. Pusztai A., Watt W. B. Fractionation and characterization of glycoproteins containing hydroxyproline from the leaves of Vicia faba. Eur J Biochem. 1969 Oct;10(3):523–532. doi: 10.1111/j.1432-1033.1969.tb00720.x. [DOI] [PubMed] [Google Scholar]
  19. ROTH H., SEGAL S., BERTOLI D. THE QUANTITATIVE DETERMINATION OF GALACTOSE--AN ENZYMIC METHOD USING GALACTOSE OXIDASE, WITH APPLICATIONS TO BLOOD AND OTHER BIOLOGICAL FLUIDS. Anal Biochem. 1965 Jan;10:32–52. doi: 10.1016/0003-2697(65)90238-1. [DOI] [PubMed] [Google Scholar]
  20. Roberts K., Gurney-Smith M., Hills G. J. Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res. 1972 Sep;40(5):599–613. doi: 10.1016/s0022-5320(72)80046-7. [DOI] [PubMed] [Google Scholar]
  21. Sharon N., Lis H. Lectins: cell-agglutinating and sugar-specific proteins. Science. 1972 Sep 15;177(4053):949–959. doi: 10.1126/science.177.4053.949. [DOI] [PubMed] [Google Scholar]
  22. Siddiqui I. R., Wood P. J. Structural investigation of water-soluble rapeseed (Brassica campestris) polysaccharides. II. An acidic arabinogalactan. Carbohydr Res. 1972 Sep;24(1):1–9. doi: 10.1016/s0008-6215(00)82254-5. [DOI] [PubMed] [Google Scholar]
  23. Suzuki Y., Suzuki K. Specific radioactive labeling of terminal n-acetylgalactosamine of glycosphingolipids by the galactose oxidase-sodium borohydride method. J Lipid Res. 1972 Sep;13(5):687–690. [PubMed] [Google Scholar]
  24. Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YANG J. T. The viscosity of macromolecules in relation to molecular conformation. Adv Protein Chem. 1961;16:323–400. doi: 10.1016/s0065-3233(08)60032-7. [DOI] [PubMed] [Google Scholar]
  26. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  27. Yosizawa Z., Sato T., Schmid K. Hydrazinolysis of alpha-1-acid glycoprotein. Biochim Biophys Acta. 1966 Jun 29;121(2):417–420. doi: 10.1016/0304-4165(66)90134-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES