Abstract
This study presents ultrastructural evidence for the presence of a variety of fibril-to-fibril interactions or associations in the architecture of the general matrix of articular cartilage. These interactions are believed to serve a higher purpose of repeatedly constraining an overall radial arrangement of fibrils into an array of oblique interconnecting segments thus creating a three dimensional meshwork within which the hydrated ground substance is constrained. It is argued that any reduction in these interfibrillar interactions will allow the oblique fibril segments to revert to a low energy radial configuration, thus explaining the presence of such arrays prominent in various degenerate forms of articular cartilage.
Full text
PDF![185](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/573ae7f92d08/janat00187-0186.png)
![186](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/b2323dc67c22/janat00187-0187.png)
![187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/0257a45fcd02/janat00187-0188.png)
![188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/94eae4623536/janat00187-0189.png)
![189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/70bf6c85694d/janat00187-0190.png)
![190](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/3f29ebb1706b/janat00187-0191.png)
![191](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/9618515010ca/janat00187-0192.png)
![192](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/d744bd597082/janat00187-0193.png)
![193](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/11f2e1046cff/janat00187-0194.png)
![194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/728a34823931/janat00187-0195.png)
![195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/663e4ccfd42d/janat00187-0196.png)
![196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/59233c8772df/janat00187-0197.png)
![197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/3e5acd5a9bbe/janat00187-0198.png)
![198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/ece680fa60ce/janat00187-0199.png)
![199](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/5b0835c01ced/janat00187-0200.png)
![200](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb3/1166534/70300ed3e4d7/janat00187-0201.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aspden R. M., Hukins D. W. Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function. Proc R Soc Lond B Biol Sci. 1981 Jul 14;212(1188):299–304. doi: 10.1098/rspb.1981.0040. [DOI] [PubMed] [Google Scholar]
- Broom N. D. Abnormal softening in articular cartilage: its relationship to the collagen framework. Arthritis Rheum. 1982 Oct;25(10):1209–1216. doi: 10.1002/art.1780251010. [DOI] [PubMed] [Google Scholar]
- Broom N. D. Further insights into the structural principles governing the function of articular cartilage. J Anat. 1984 Sep;139(Pt 2):275–294. [PMC free article] [PubMed] [Google Scholar]
- Broom N. D., Marra D. L. New structural concepts of articular cartilage demonstrated with a physical model. Connect Tissue Res. 1985;14(1):1–8. doi: 10.3109/03008208509089838. [DOI] [PubMed] [Google Scholar]
- Broom N. D. The altered biomechanical state of human femoral head osteoarthritic articular cartilage. Arthritis Rheum. 1984 Sep;27(9):1028–1039. doi: 10.1002/art.1780270910. [DOI] [PubMed] [Google Scholar]
- Echlin P. Low temperature scanning electron microscopy: a review. J Microsc. 1978 Jan;112(1):47–61. doi: 10.1111/j.1365-2818.1978.tb01153.x. [DOI] [PubMed] [Google Scholar]
- FESSLER J. H. A structural function of mucopolysaccharide in connective tissue. Biochem J. 1960 Jul;76:124–132. doi: 10.1042/bj0760124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner D. L., O'Connor P., Oates K. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage. J Anat. 1981 Mar;132(Pt 2):267–282. [PMC free article] [PubMed] [Google Scholar]
- Meachim G. Cartilage fibrillation on the lateral tibial plateau in Liverpool necropsies. J Anat. 1976 Feb;121(Pt 1):97–106. [PMC free article] [PubMed] [Google Scholar]
- Mow V. C., Holmes M. H., Lai W. M. Fluid transport and mechanical properties of articular cartilage: a review. J Biomech. 1984;17(5):377–394. doi: 10.1016/0021-9290(84)90031-9. [DOI] [PubMed] [Google Scholar]
- Mow V. C., Mak A. F., Lai W. M., Rosenberg L. C., Tang L. H. Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J Biomech. 1984;17(5):325–338. doi: 10.1016/0021-9290(84)90027-7. [DOI] [PubMed] [Google Scholar]
- Parry D. A., Barnes G. R., Craig A. S. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci. 1978 Dec 18;203(1152):305–321. doi: 10.1098/rspb.1978.0107. [DOI] [PubMed] [Google Scholar]
- Serafini-Fracassini A., Smith J. W. Observations on the morphology of the proteinpolysaccharide complex of bovine nasal cartilage and its relationship to collagen. Proc R Soc Lond B Biol Sci. 1966 Oct 11;165(1001):440–449. doi: 10.1098/rspb.1966.0076. [DOI] [PubMed] [Google Scholar]
- Weiss C. Ultrastructural characteristics of osteoarthritis. Fed Proc. 1973 Apr;32(4):1459–1466. [PubMed] [Google Scholar]
- Yarker Y. E., Aspden R. M., Hukins D. W. Birefringence of articular cartilage and the distribution on collagen fibril orientations. Connect Tissue Res. 1983;11(2-3):207–213. doi: 10.3109/03008208309004857. [DOI] [PubMed] [Google Scholar]