Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2024 Dec 11;14:1476066. doi: 10.3389/fcimb.2024.1476066

Five new species, two new sexual morph reports, and one new geographical record of Apiospora (Amphisphaeriales, Sordariomycetes) isolated from bamboo in Yunnan, China

Li-Su Han 1,2,, Chao Liu 1,, Dong-Qin Dai 1,*, Itthayakorn Promputtha 2, Abdallah M Elgorban 3, Salim Al-Rejaie 4, Qiang Li 1,*, Nalin N Wijayawardene 1,5
PMCID: PMC11668347  PMID: 39720793

Abstract

Apiospora is an important genus in the Apiosporaceae family with a worldwide distribution. They exhibit different lifestyles including pathogenic, saprophytic, and endophytic. In this study, we aimed to explore the Apiospora associated with bamboo and collected 14 apiospora-like taxa from the forests of Yunnan Province, China. Morphological and phylogenetic analyses (combined ITS, LSU, tef1-α, and tub2 sequence data) confirmed that these collections belong to Apiospora s. str. and reports five new species (viz., Ap. dehongensis, Ap. jinghongensis, Ap. shangrilaensis, Ap. zhaotongensis, and Ap. zhenxiongensis). New sexual morphs of asexually typified Ap. globose and Ap. guangdongensis species, and a new geographical record of Ap. subglobosa are also reported. The findings of this study not only enhance the diversity of bambusicolous fungi in the region of Yunnan, but also geographical distribution of some known Apiospora species.

Keywords: Apiosporaceae, phylogeny, saprobes, taxonomy, bambusicolous fungi

Introduction

Apiosporaceae (Amphisphaeriales, Sordariomycetes, Ascomycota fide Wijayawardene et al., 2022) was introduced by Hyde et al. (1998), with Apiospora Sacc. as the type genus (Saccardo, 1875). Currently, Apiosporaceae comprises three genera—Apiospora, Arthrinium Kunze, and Nigrospora Zimm (Pintos and Alvarado, 2021; Jiang et al., 2022a). The relationship among the genera in Apiosporaceae is confusing as some taxa lack sequence data and show morphological plasticity. For example, Apiospora resembles Arthrinium s. str. but is phylogenetically well-distinct (Pintos and Alvarado, 2021; Jiang et al., 2022a).

The genus Apiospora was introduced by Saccardo (1875), with Ap. montagnei Sacc. as the type species (Clements and Shear, 1931). Currently, 175 epithets are listed under the genus of Apiospora in Index Fungorum (Index Fungorum 2024; accession date: 16 June 2024). Apiospora was reported as a holomorphic genus; the sexual morph is characterized by multi-locular stromata and 1-septate (near the lower cell) ascospores (Dai et al., 2016, 2017; Bhunjun et al., 2022). The asexual morphs usually occur as coelomycetous on natural substrates or hyphomycetous on culture (e.g., MEA, OA, and PDA). The coelomycetous morph is characterized by dark brown conidia, with a longitudinal and transparent slit (Dai et al., 2016; Pintos and Alvarado, 2021; Zhao et al., 2023). The hyphomycetous morph is characterized by hyaline conidiophores, basauxic conidiogenous cells, globose to subglobose, and pale brown to brown conidia (Wang et al., 2018; Pintos and Alvarado, 2021; Tian et al., 2021; Zhao et al., 2023).

Members of Apiospora are found in different habitats such as animal tissues (including humans), air, lichens, plants, soil, and seaweeds (Liao et al., 2023). The members of Apiospora show a wide distribution and have been reported from tropical, sub-tropical, Mediterranean, and temperate regions (Pintos and Alvarado, 2021; Kwon et al., 2022). Furthermore, the species of Apiospora have been reported as endophytes, saprobes, or pathogens, and some particular species have two or three lifestyles (Samuels et al., 1981; Liao et al., 2023; Zeng et al., 2024). For instance, Ap. arundinis (Corda) Pintos & P. Alvarado has been reported as pathogens, saprobes, and endophytes (Feng et al., 2021; Liao et al., 2023). Moreover, Ap. arundinis has also been reported as a pathogen of plants, animals, and humans (Martínez-Cano et al., 1992; Mavragani et al., 2007; Bagherabadi et al., 2014; Chen et al., 2014; Jiang and Tian, 2021).

According to Monkai et al. (2022); Zhao et al. (2023), and Liu et al. (2024), asexual morphs of Apiospora are frequently observable, while sexual morphs are rare. Therefore, this study aims to explore the morphology of the sexual morph of Apiospora. Of this, a total of 14 Apiospora samples were collected from the Yunnan Province, China. Among these new collections, five new species (e.g., Ap. dehongensis, Ap. jinghongensis, Ap. shangrilaensis, Ap. zhaotongensis, and Ap. zhenxiongensis), two sexual morphs of asexually typified species (Ap. globosa and Ap. guangdongensis), and one new country record (Ap. subglobosa) are reported along with the morphological descriptions, illustrations, and updated phylogenetic trees.

Materials and methods

Collection and morphological studies

The dead and decaying bamboo culms and branches were collected from several forests in Dehong, Shangri-La, Xishuangbanna, and Zhaotong in Yunnan Province. Collected samples were kept in envelope bags and transported to the lab for further evaluation. The stromata and micro-morphological characteristics were observed and photographed using Leica S8AP0 and Olympus BX53 stereomicroscopes, respectively, which are equipped with a high-definition digital camera. The sizes of the fungal structures were measured by the Tarosoft (R) Image Frame Work program (IFW). The photo plates were processed with the Adobe Photoshop CS6 software (Adobe Systems Inc., San Jose, CA, USA).

Isolation and preservation

Pure cultures of the new collections were obtained by single spore isolation. The ascospores were picked from stromata and dispersed on sterile water droplets on a cavity slide. Spore suspensions were placed on potato dextrose agar (PDA) and stored at 27°C until germination. The germinated spores were aseptically transferred into new PDA plates and incubated. The characteristics of fungi colonies were recorded and photographed after 20 days.

Dried herbarium samples were preserved at the Mycological Herbarium of Zhongkai University of Agriculture and Engineering (MHZU) and Herbarium of Guizhou Medical University, Guiyang, China (GMB-W). Living cultures were deposited in Zhongkai University of Agriculture and Engineering (ZHKUCC) and Guizhou Medical University Culture Collection (GMBCC) Guiyang.

DNA extraction, PCR, and sequencing

The genomic DNA was extracted from fresh fungal mycelia grown on PDA [using Biospin Fungus Genomic DNA Extraction Kit (BioFlux®)]. However, for two species, single spore isolation was not successful. Thus, we used fruiting bodies to extract DNA using an E.Z.N.A. Forensic DNA Kit (BIO-TEK). The details of the primers used for PCR amplification are presented in Table 1 . We followed Tian et al. (2021) for PCR amplification conditions. PCR products were sequenced at Shanghai Mayobio Biomedical Technology Co., China. All newly generated nucleotide sequence data were submitted to GenBank and the accession numbers were obtained ( Table 2 ).

Table 1.

LSU, ITS, tef1-α, and tub2 loci primers information.

Loci Primers and base pairs (5′ to 3′) References
LSU (large subunit rDNA) Forward: LROR 5′-GTACCCGCTGAACTTAAGC-3′
Reverse: LR5 5′-ATCCTGAGGGAAACTTC-3′
Vilgalys and Hester (1990)
ITS (internal transcribed spacers) Forward: ITS5 5′-TCCTCCGCTTATTGATATGC-3′
Reverse: ITS4 5′-GGAAGTAAAAGTCGTAACAAGG-3′
White et al. (1990)
tef1-α (elongation factor 1-alpha) Forward: EF1-728F 5′-CATCGAGAAGTTCGAGAAGG-3′
Reverse: EF-2 5′-GGARGTACCAGTSATCATGTT-3′
O'Donnell et al. (1998); Carbone and Kohn (1999)
tub2 (β-tubulin) Forward: Bt2a 5′-GGTAACCAAATCGGTGCTGCTTTC-3′
Reverse: Bt2b 5′-ACCCTCAGTGTAGTGACCCTTGGC-3′
Glass and Donaldson (1995)

Table 2.

Details of the taxa used in the phylogenetic analyses.

Taxa Strains Substrate Country Lifestyles GenBank Accession Numbers
LSU ITS tub2 tef1-α
Apiospora acutiapica KUMCC 20-0210T Bambusa bambos China Saprobe MT946339 MT946343 MT947366 MT947360
Ap. adinandrae SAUCC 1282B-1T Adinandra glischroloma China OR739572 OR739431 OR757128 OR753448
Ap. agari KUC21333T Agarum cribrosum Republic of Korea MH498440 MH498520 MH498478 MH544663
Ap. aquatica S 642T Submerged wood China Saprobe MK835806 MK828608 NA NA
Ap. arctoscopi KUC21331T Egg of Arctoscopus japonicus Republic of Korea MH498449 MH498529 MH498487 MN868918
Ap. armeniaca SAUCC DL1831T Prunus armeniaca China Endophyte OQ615269 OQ592540 OQ613285 OQ613313
Ap. armeniaca SAUCC DL1844 Prunus armeniaca China Endophyte OQ615268 OQ592539 OQ613284 OQ613312
Ap. arctoscopi KUC21331T Egg of Arctoscopus japonicus Republic of Korea MH498449 MH498529 MH498487 MN868918
Ap. arundinis GZCC 20-0116T Aspergillus flavus sclerotium USA Saprobe/endophyte MW478899 MW481720 MW522968 MW522952
Ap. aseptata KUNCC 23-14169T Dicranopteris pedata China Endophyte OR590335 OR590341 OR634943 OR634949
Ap. aurea CBS 244.83T Air Spain KF144935 AB220251 KF144981 KF145023
Ap. balearica CBS 145129T Undetermined Poaceae Spain Saprobe MK014836 MK014869 MK017975 NA
Ap. babylonica SAUCC DL1841T Salix babylonica China Endophyte OQ615267 OQ592538 OQ613283 OQ613311
Ap. babylonica SAUCC DL1864 Salix babylonica China Endophyte OQ615266 OQ592537 OQ613282 OQ613310
Ap. bambusicola MFLUCC 20-0144T Culms of Schizostachyum
brachycladum
Thailand Saprobe MW173087 MW173030 NA MW183262
Ap. bawanglingensis SAUCC BW0444T Indocalamus longiauritus China OR739570 OR739429 OR757126 OR753446
Ap. biserialis CGMCC 3.20135T Bamboo China Saprobe MW478885 MW481708 MW522955 MW522938
Ap. camelliaesinensis LC 5007T Camellia sinensis China Endophyte KY494780 KY494704 KY705173 KY705103
Ap. cannae ZHKUCC 22-0127 Canna China Saprobe OR164948 NA OR166321 OR166285
Ap. chiangraiense MFLUCC 21-0053T Dead culms of bamboo Thailand Saprobe MZ542524 MZ542520 MZ546409 NA
Ap. chromolaenae MFLUCC 17-1505T Chromolaena odorata Thailand Saprobe MT214436 MT214342 NA NA
Ap. cordylinae GUCC 10027T Cordyline fruticosa China NA MT040106 MT040148 MT040127
Ap. coryli CFCC 58978T Corylus yunnanensis China Saprobe OR133586 OR125564 OR139978 OR139974
Ap. cyclobalanopsidis CGMCC 3.20136T Cyclobalanopsidis glauca China Saprobe MW478892 MW481713 MW522962 MW522945
Ap. dehongensis GMBCC1011T Bamboo China Saprobe PQ111483 PQ111494 PQ463974 PQ464025
Ap. dehongensis GMBCC1012 Bamboo China Saprobe PQ111484 PQ111495 PQ463975 PQ464026
Ap. dematiacea KUNCC 23-14202T Dicranopteris ampla China Endophyte OR590339 OR590346 OR634948 OR634953
Ap. descalsii CBS 145130T Ampelodesmos mauritanicus Spain Saprobe MK014837 MK014870 MK017976 NA
Ap. dichotomanthi LC 4950T Dichotomanthes tristaniicarpa China Saprobe/
endophyte
KY494773 KY494697 KY705167 KY705096
Ap. dicranopteridis KUNCC 23-14171 Dicranopteris pedata China Endophyte OR590336 OR590342 OR634944 OR634950
Ap. dongyingensis SAUCC 0302T On diseased leaves of bamboo China OP572424 OP563375 OP573270 OP573264
Ap. elliptica ZHKUCC 22-0131 On dead stem of unidentified plant China Saprobe OR164952 NA OR166323 OR166284
Ap. endophytica ZHKUCC 23-0006T Wurfbainia villosa China Endophyte OQ587984 OQ587996 OQ586075 OQ586062
Ap. esporlensis CBS 145136T Phyllostachys aurea Spain Saprobe MK014845 MK014878 MK017983 NA
Ap. euphorbiae IMI 285638b Bambusa sp. Bangladesh Saprobe AB220335 AB220241 AB220288 NA
Ap. fermenti KUC 21289T Seaweed Republic of Korea MF615213 MF615226 MF615231 MH544667
Ap. fujianensis CGMCC 3.25647T Diseased bamboo leaves China PP159034 PP159026 PP488470 PP488454
Ap. fujianensis CGMCC 3.25648 Diseased bamboo leaves China PP159035 PP159027 PP488471 PP488455
Ap. fuzhouensis CGMCC 3.25649T Diseased bamboo leaves China PP159036 PP159028 PP488472 PP488456
Ap. fuzhouensis CGMCC 3.25650 Diseased bamboo leaves China PP159037 PP159028 PP488473 PP488457
Ap. gaoyouensis CFCC 52301T Phragmites australis China Saprobe NA MH197124 MH236789 MH236793
Ap. garethjonesii KUMCC 16-0202T Dead culms of bamboo China Saprobe KY356091 KY356086 NA NA
Ap. gelatinosa HKAS 11962T Bamboo China Saprobe MW478888 MW481706 MW522958 MW522941
Ap. globosa KUNCC 23-14210T Dicranopteris linearis China Endophyte OR590340 OR590347 NA OR634954
Ap. globosa GMBCC1021 Bamboo China Saprobe PQ111491 PQ111502 NA PQ464027
Ap. gongcheniae YNE00465T Living stems of Oryza meyeriana
subsp. granulata
China Endophyte PP033102 PP033259 PP034691 PP034683
Ap. gongcheniae YNE00565 Living stems of Oryza meyeriana
subsp. granulata
China Endophyte PP033103 PP0332560 PP034692 PP034684
Ap.guangdongensis ZHKUCC 23-0004T Wurfbainia villosa China Endophyte OQ587982 OQ587994 OQ586073 OQ586060
Ap. guangdongensis GMBCC1022 Bamboo China Saprobe PQ111485 PQ111496 PQ463976 PQ464020
Ap. guangdongensis GMBCC1023 Bamboo China Saprobe PQ111486 PQ111497 PQ463977 PQ464021
Ap. guiyangensis HKAS 102403T Unidentified grass China Saprobe MW240577 MW240647 MW775604 NA
Ap. guizhouensis LC 5322T Air in karst cave China Endophyte KY494785 KY494709 KY705178 KY705108
Ap. guizhouensis GZCC 20–0114 bamboo MW478895 MW481716 MW522964 MW522948
Ap. hainanensis SAUCC 1681T On diseased leaves of bamboo China Pathogen OP572422 OP563373 OP573268 OP573262
Ap. hispanica IMI 326877T Beach sand Spain Saprobe AB220336 AB220242 AB220289 NA
Ap. hydei CBS 114990T Culms of Bambusa
tuldoides
China Saprobe/endophyte KF144936 KF144890 KF144982 KF145024
Ap. hyphopodii MFLUCC 15-0003T Bambusa tuldoides China Saprobe NA KR069110 NA NA
Ap. hyphopodii KUMCC 16-0201 Bambusa tuldoides China Saprobe KY356093 KY356088 NA NA
Ap. hysterina ICMP 6889T Bamboo New Zealand Saprobe MK014841 MK014874 MK017980 MK017951
Ap. iberica CBS 145137T Arundo donax Portugal Saprobe MK014846 MK014879 MK017984 NA
Ap. intestini CBS 135835T Gut of a grasshopper India Saprobe KR149063 KR011352 KR011350 KR011351
Ap. italica CBS 145138T Arundo donax Italy Saprobe MK014847 MK014880 MK017985 MK017956
Ap. jatrophae AMH 9557T Jatropha podagrica Italy Saprobe NA JQ246355 NA NA
Ap. jiangxiensis LC 4577T Maesa sp. China Endophyte KY494769 KY494693 KY705163 KY705092
Ap. jinanensis SAUCC DL1981T On diseased leaves of Bambusaceae sp. China Endophyte OQ615273 OQ592544 OQ613289 OQ613317
Ap. jinanensis SAUCC DL2000 On diseased leaves of Bambusaceae sp. China Endophyte OQ615272 OQ592543 OQ613288 OQ613316
Ap. jinghongensis GMB-W1013T Bamboo China Saprobe PQ140163 PQ140160 PQ463971 PQ464022
Ap. jinghongensis GMB-W1014 Bamboo China Saprobe PQ140164 PQ140161 PQ463972 PQ464023
Ap. kogelbergensis CBS 113333 K Dead culms of Restionaceae South Africa Saprobe KF144938 KF144892 KF144984 KF145026
Ap. koreana KUC21332T Egg of Arctoscopus japonicus Republic of Korea MH498444 MH498524 MH498482 MH544664
Ap. koreana KUNCC23-15553 Bamboo sp. China Saprobe PP584787 PP584690 PP982289 PP933195
Ap. lageniformis KUC21686T Branch of Phyllostachys pubescens Republic of Korea ON787761 ON764022 ON806636 ON806626
Ap. locuta-pollinis LC 11683T Brassica campestris China Saprobe NA MF939595 MF939622 MF939616
Ap. longistroma MFLUCC 11-0481T Dead culms of bamboo Thailand Saprobe KU863129 KU940141 NA NA
Ap. lophatheri CFCC 58975T On diseased leaves of Lophatherum gracile China OR133588 OR125566 OR139980 OR139970
Ap. machili SAUCC 1175A–4T Machilus nanmu China OR739574 OR739433 OR757130 OR753450
Ap. magnispora ZHKUCC 22-0001T Bamboo China Saprobe OM486971 OM728647 OM543544 OM543543
Ap. malaysiana CBS 102053T Macaranga hullettii Malaysia Saprobe KF144942 KF144896 KF144988 KF145030
Ap. marianiae AP18219T Phleum pratense Spain Saprobe ON692422 ON692406 ON677186 NA
Ap. marii CBS 497.90T Beach sands Spain Saprobe KF144947 AB220252 KF144993 KF145035
Ap. marina KUC21328T Seaweed Republic of Korea MH498458 MH498538 MH498496 MH544669
Ap. mediterranea IMI 326875 Air Spain Saprobe AB220337 AB220243 AB220290 NA
Ap. menglaensis KUNCC 24-17546T Dead culms of bamboo China Saprobe PP584790 PP584693 PP982292 PP933198
Ap. menglaensis KUNCC 24-17547 Dead culms of bamboo China Saprobe PP584791 PP584694 PP982293 PP933199
Ap. minutispora 17E-042T Mountain soil Republic of Korea NA LC517882 LC518888 LC518889
Ap. montagnei AP301120T Balearic Islands Spain Sprobes ON692424 ON692408 ON677188 ON677182
Ap. mori MFLU 18-2514T Morus australis China (Taiwan) Saprobe MW114393 MW114313 NA NA
Ap. mukdahanensis MFLUCC 21-0026T Dead bamboo Thailand Saprobe OP377742 OP377735 NA OP381089
Ap. multiloculata MFLUCC 21-0023T Dead bamboo Thailand Saprobe OL873138 OL873137 OL874718 NA
Ap. mytilomorpha DAOM 214595T Andropogon sp. India Saprobe NA KY494685 NA NA
Ap. ananasi MFLUCC 23-0101T Ananas comosus Thailand Saprobe OR438877 OR438410 OR538085 OR500339
Ap. neobambusae LC 7106T Leaves of bamboo China Saprobe/endophyte KY494794 KY494718 KY705186 KY806204
Ap. neochinense CFCC 53036T Fargesia qinlingensis China Saprobe NA MK819291 MK818547 MK818545
Ap. neogarethjonesii HKAS 102408T Bamboo China Saprobe MK070898 MK070897 NA NA
Ap. neogongcheniae YNE01248T Living stems of Poaceae plant China Endophyte PP033106 PP033263 PP034695 PP034687
Ap. neogongcheniae YNE01260 Living stems of Poaceae plant China Endophyte PP033107 PP033264 PP034696 PP034688
Ap. neosubglobosa JHB 006 Bamboo China Saprobe KY356094 KY356089 NA NA
Ap. neosubglobosa KUMCC 16-0203T Bamboo China Saprobe KY356095 KY356090 NA NA
Ap. obovata LC 4940T Lithocarpus sp. China Endophyte KY494772 KY494696 KY705166 KY705095
Ap. oenotherae CFCC 58972T On diseased
leaves of Oenothera bienni
China OR133590 OR125568 OR139982 OR139972
Ap. olivata ZY22.052T Soil China OR680598 OR680531 OR843234 OR858925
Ap. olivata ZY22.053 Soil China OR680599 OR680532 OR843235 OR858926
Ap. ovata CBS 115042T Arundinaria hindsii China Saprobe KF144950 KF144903 KF144995 KF145037
Ap. paragongcheniae YNE00992T Living stems of Poaceae plant China Endophyte PP033104 PP033261 PP034693 PP034685
Ap. paragongcheniae YNE01259 Living stems of Poaceae plant China Endophyte PP033105 PP033262 PP034694 PP034686
Ap. paraphaeosperma MFLUCC 13-0644T Dead culms of bamboo Thailand Saprobe KX822124 KX822128 NA NA
Ap. phragmitis CPC 18900 Phragmites australis Italy Saprobe KF144956 KF144909 KF145001 KF145043
Ap. phyllostachydis MFLUCC 18-1101T Phyllostachys heteroclada China Saprobe MH368077 MK351842 MK291949 MK340918
Ap. piptatheri CBS 145149T Piptatherum miliaceum Spain Saprobe MK014860 MK014893 NA NA
Ap. pseudohyphopodii KUC21680T Culm of Phyllostachys pubescens Republic of Korea ON787765 ON764026 ON806640 ON806630
Ap. pseudoparenchymatica LC7234T Leaves of bamboo China Endophyte KY494819 KY494743 KY705211 KY705139
Ap. pseudorasikravindrae KUMCC 20-0208T Bambusa dolichoclada China Saprobe NA MT946344 MT947367 MT947361
Ap. pseudosinensis CPC 21546T On diseased leaves of bamboo Netherlands Saprobe KF144957 KF144910 NA KF145044
Ap. pseudospegazzinii CBS 102052T Macaranga hullettii Malaysia Saprobe KF144958 KF144911 KF145002 KF145045
Ap. pterosperma CPC 20193T Lepidosperma gladiatum Australia Saprobe KF144960 KF144913 KF145004 KF145046
Ap. pusillisperma KUC21321T Seaweed Republic of Korea MH498453 MH498533 MH498491 MN868930
Ap. qinlingensis CFCC 52303T Fargesia qinlingensis China Saprobe NA MH197120 MH236791 MH236795
Ap. rasikravindrae LC 8179 Brassica rapa China Saprobe KY494835 KY494759 KY705227 KY705155
Ap. rasikravindrae MFLUCC 21-0051 Dead culms of bamboo Thailand Saprobe MZ542527 MZ542523 MZ546412 MZ546408
Ap. rasikravindrae MFLUCC 21-0054 Dead culms of maize Thailand Saprobe MZ542526 MZ542522 MZ546411 MZ546407
Ap. sacchari CBS 372.67 Air Endophyte KF144964 KF144918 KF145007 KF145049
Ap. sacchari CBS 664.74 Soil under Calluna vulgaris Netherlands Endophyte KF144965 KF144919 KF145008 KF145050
Ap. saccharicola CBS 831.71 Air Netherlands Endophyte KF144969 KF144922 KF145012 KF145054
Ap. sargassi KUC21228T Sargassum fulvellum Republic of Korea KT207696 KT207746 KT207644 MH544677
Ap. sasae CBS 146808T Dead culms China Saprobe MW883797 MW883402 MW890120 NA
Ap. septata CGMCC 3.20134T Bamboo China Saprobe MW478890 MW481711 MW522960 MW522943
Ap. senecionis KUNCC23-15556T Senecio scandens China Saprobe PP584794 PP584697 NA PP993513
Ap. senecionis KUNCC23-15557 Senecio scandens China Saprobe PP584795 PP584698 NA PP993514
Ap. serenensis IMI 326869T Excipients, atmosphere, and home dust Spain Saprobe AB220344 AB220250 AB220297 NA
Ap. setariae CFCC 54041 Setaria viridis China Saprobe NA MT492004 MT497466 MW118456
Ap. setostroma KUMCC 19-0217 Dead branches of bamboo China Saprobe MN528011 MN528012 NA MN527357
Ap. shangrilaensis GMBCC1019T Bamboo China Saprobe PQ111481 PQ111492 PQ164976 PQ164974
Ap. shangrilaensis GMBCC1020 Bamboo China Saprobe PQ111482 PQ111493 PQ164977 PQ164975
Ap. sichuanensis HKAS 107008T Dead culm of grass China Saprobe MW240578 MW240648 MW775605 NA
Ap. sorghi URM 93000T Sorghum bicolor Brazil Endophyte NA MK371706 MK348526 NA
Ap. sp. ZHKUCC 23-0010 Wurfbainia villosa China Endophyte OQ587988 OQ588000 OQ586079 OQ586066
Ap. sp. ZHKUCC 23-0011 Wurfbainia villosa China Endophyte OQ587989 OQ588001 OQ586080 NA
Ap. stipae CBS 146804T Dead culm of Stipa gigantea Spain Saprobe MW883798 MW883403 MW890121 MW890082
Ap. subglobosa MFLUCC 11-0397T Dead culms of bamboo Thailand Saprobe KR069113 KR069112 NA NA
Ap. subglobosa GMB-W1024 Bamboo China Saprobe PQ140165 PQ140162 PQ463973 PQ464024
Ap. subrosea LC 7292T Leaves of bamboo China Endophyte KY494828 KY494752 KY705220 KY705148
Ap. taeanensis KUC21322T Seaweed Republic of Korea NA MH498515 MH498473 MH544662
Ap. thailandica MFLUCC 15-0202T Dead culms of bamboo Thailand Saprobe KU863133 KU940145 NA NA
Ap. trachycarpi KUNCC23-15558T Trachycarpus fortune China Saprobe PP584798 PP584701 PP982298 PP933204
Ap. trachycarpi KUNCC23-15559 Trachycarpus fortune China Saprobe PP584799 PP584702 PP982299 PP933205
Ap. tropica MFLUCC 21-0056T Dead culms of bamboo Thailand Saprobe OK491653 OK491657 NA NA
Ap. vietnamensis IMI 99670T Citrus sinensis Vietnam Saprobe KX986111 KX986096 KY019466
Ap. wurfbainiae ZHKUCC 23-0008T Wurfbainia villosa China Endophyte OQ587986 OQ587998 OQ586077 OQ586064
Ap. xenocordella CBS 478.86T Soil from roadway Zimbabwe KF144970 KF144925 KF145013 KF145055
Ap. xenocordella CBS 595.66 On dead branches Misiones Saprobe KF144971 KF144926 NA NA
Ap. xishuangbannaensis KUMCC 21-0695T The wing of Rhinolophus pusillus China OP363248 ON426832 OR025930 OR025969
Ap. yunnana MFLUCC 15-1002T Phyllostachys nigra China Saprobe KU863135 KU940147 NA NA
Ap. yunnanensis ZHKUCC 23-0014T Grass China Saprobe OQ587992 OQ588004 OQ586083 OQ586070
Ap. zhaotongensis GMBCC1015T Bamboo China Saprobe PQ111489 PQ111500 PQ463980 PQ464016
Ap. zhaotongensis GMBCC1016 Bamboo China Saprobe PQ111490 PQ111501 PQ463981 PQ464017
Ap. zhenxiongensis GMBCC1017T Bamboo China Saprobe PQ111487 PQ111498 PQ463978 PQ464018
Ap. zhenxiongensis GMBCC1018 Bamboo China Saprobe PQ111488 PQ111499 PQ463979 PQ464019
Neoarthrinium urticae IMI 326344 Leaf litter India AB220339 AB220245 AB220292 NA

Newly generated sequences in this study are in bold. “T” indicates type materials; “NA” indicates information not available.

AMH, Ajrekar Mycological Herbarium, Pune, Maharashtra, India; CBS, Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands; CFCC, China Forestry Culture Collection Center, Beijing, China; CGMCC, China General Micro biological Culture Collection; CPC, Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute; DAOM, Canadian Collection of Fungal Cultures, Ottawa, Canada; GMBCC, Guizhou Medical University Culture Collection, Guiyang, China; GMB-W, Herbarium of Guizhou Medical University, Guiyang, China; GUCC, Guizhou University Culture Collection, Guizhou, China; GZCC, Guizhou Culture Collection, China; HKAS, Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China; ICMP, International Collection of Microorganisms from Plants, New Zealand; IMI, Culture collection of CABI Europe UK Centre, Egham, UK; JHB, H.B. Jiang; KUC, the Korea University Fungus Collection, Seoul, Korea; SFC the Seoul National University Fungus Collection; KUMCC, Culture collection of Kunming Institute of Botany, Yunnan, China; KUNCC; Kunming Institute of Botany Culture Collection Center, Kunming, China; LC, Personal culture collection of Lei Cai, housed in the Institute of Microbiology, Chinese Academy of Sciences, China; MFLUCC, Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; SAUCC, Shandong Agricultural University Culture Collection; URM, ZHKUCC, Zhongkai University of Agriculture and Engineering, Guangdong, China.

Phylogenetic analyses

All newly obtained forward and reverse sequences were assembled using Geneious 9.1.2. Those assembled sequences were searched using BLASTn (http://blast.ncbi.nlm.nih.gov/, accessed on 16 January 2024) to retrieve the sequences of closely related strains. The preliminary identification results showed that our new collections match closest with Apiospora, then all available sequences of Apiospora were downloaded from the GenBank based on previous literature ( Table 2 ). The matrix of consensus sequences was aligned with MAFFT v. 7 (Katoh and Standley, 2013). The sequence alignments were trimmed by using trimAl.v1.2rev59 [parameters: -gt 0.7 (ITS, tub2), -gt 0.8 (LSU), -gt 0.9 (tef1-α); Capella-Gutiérrez et al., 2009] and BioEdit v. 7.0 (Hall, 2004) to remove unclear and uninformative regions. The alignments of four genes (LSU, ITS, tef1-α, and tub2) were concatenated by Matrix 1.9 (Vaidya et al., 2011). The AliView 1.26 (Larsson, 2014) was used to convert Fasta files to Phylip (for Maximum likelihood) and Nexus (for Bayesian inference) formats. Maximum likelihood analyses (ML) were performed at the CIPRES web portal using RAxML-HPC2 on XSEDE (8.2.12) (Stamatakis et al., 2008; Stamatakis, 2014) with GTRGAMMA model with 1,000 bootstrap pseudoreplicates. Bayesian inference posterior probabilities (BYPP) (Zhaxybayeva and Gogarten, 2002) were evaluated by Markov Chain Monte Carlo (MCMC) in MrBayes on XSEDE (3.2.7a) (Rannala and Yang, 1996) in the CIPRES Science Gateway web (Ronquist et al., 2012). The model of nucleotide evolution was determined by MrMTgui (Ma, 2016); GTR+I+G was the best-fit model for the ITS and tub2, SYM+I+G was the best-fit model for the LSU, and GTR+G was the best-fit model for tef1-α. Six simultaneous Markov chains were run for 1,000,000 generations and trees were sampled at every 100th generation. Phylogenetic trees were viewed in FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut, 2012) and formatted by using Adobe Illustrator CS v. 5.

Registration of novel taxa

Newly introduced taxa were registered at the Index Fungorum (2024) and the identifiers were obtained, fulfilling the requirements as mentioned in Art. F.5.1 (International Code of Nomenclature for Algae, Fungi and Plant).

Results

Phylogenetic results

In this study, we selected 145 strains for the phylogenetic analysis and Neoarthrinium urticae (IMI 326344) as the outgroup taxon. In the phylogenetic analysis, the final alignment consisted of 2,099 characters in total, including gaps (ITS: 1–503 bp, LSU: 504–1,299 bp, tef1-α: 1,300–1,670 bp, tub2: 1,671–2,099 bp). The RAxML analysis of the combined dataset yielded the best scoring tree ( Figure 1 ) with a final ML optimization likelihood value of −26,132.916506. The matrix had 1,073 distinct alignment patterns, with 14.23% undetermined characters or gaps. The estimated base frequencies were as follows: A = 0.231558, C = 0.249603, G = 0.260882, and T = 0.257956; substitution rates AC = 1.277568, AG = 3.415629, AT = 1.036259, CG = 0.978503, CT = 5.039154, and GT = 1.000000; and gamma distribution shape parameter α = 0.556683.

Figure 1.

Figure 1

Phylogram retrieved from RAxML of Apiospora species using the combined dataset of LSU, ITS, tef1-α, and tub2 gene regions. The statistical values are provided at nodes as ML/PP (ML value equal to or above 60% and BI value equal to or above 0.90). The tree is rooted with Neoarthrinium urticae (IMI 326344). Ex-types and new strains are indicated by the superscript “T” and red respectively.

Furthermore, according to the phylogenetic results, two isolates (GMBCC1011 and GMBCC1012) have a close affinity to Ap. garethjonesii (KUMCC 16-0202, ex-type) with 90% ML and 0.99 BP bootstrap support. Two other isolates, GMBCC1022 and GMBCC1023, had a close affinity to Ap. guangdongensis (ZHKUCC 23-0004, ex-type). While GMBCC1019 and GMBCC1020 formed a distinct lineage with 100% ML bootstrap support and 1.00 posterior probability in BI analysis, GMBCC1017 and GMBCC1018 with GMBCC1015 and GMBCC1016 formed a sister branch with 99% ML and 1.00 BP statistical support. The isolate GMBCC1021 clustered with Ap. globosa (KUNCC 23-14210, ex-type) with 100% ML and 1.00 BP. The collection GMB-W1024 has a high similarity with Ap. subglobosa (MFLUCC 11-0397, ex-type) with 100% ML and 1.00 BP. Two isolates, GMB-W1013 and GMB-W1014, formed a distinct branch with Ap. multiloculata (MFLUCC 21-0023, ex-type) with 100% ML and 1.00 posterior probability in BI analysis ( Figure 1 ).

Taxonomic descriptions

Apiospora Sacc., Atti Soc. Veneto-Trent. Sci. Nat., Padova, Sér. 4 4: 85 (1875); Index Fungorum Registration Identifier: IF264; Classification: Apiosporaceae, Amphisphaeriales, Sordariomycetes.

Apiospora dehongensis L.S. Han & D.Q. Dai, sp. nov. ( Figure 2 )

Figure 2.

Figure 2

Apiospora dehongensis (GMB-W1011, holotype). (A) Bamboo specimen. (B–D) Stromata developing on bamboo branches. (E, F) Vertical sections of stromata. (G, H) Peridium. (I) Paraphyses. (J, K) Cultures on PDA with red pigmentation [upper (J), reverse (K)]. (L–P) Asci. (Q–T) Ascospores. (U) Ascospore stained in Indian ink showing gelatinous sheath. (V) A germinating ascospore. (W) Conidia formed in culture. (X, Y) Conidia. Scale bars: (B–D) 2 mm, (E) 200 μm, (F) 150 μm, (G, H, L–P, X, Y) 30 μm, and (I, Q–V) 15 μm.

Index Fungorum Identifier: IF902463

Etymology: Named after the location “Dehong” where the new taxon was collected.

Description: Saprobic on dead branches of bamboo. Sexual morph: Stromata 0.4–2.5 mm long, 150–400 µm wide, 125–140 µm high, dark brown, fusiform or naviculate, raised on the host surface, with a slit-like opening at the top center, immersed, scattered to gregarious, or forming groups, uniloculate to multi-loculate. Locules 100–225 μm diameter × 95–130 μm high ( x¯  = 145 × 105 µm, n = 20), gregarious, clustered, immersed in stromata, arranged in a row, obpyriform to subglobose, ostiolate at center with periphyses, membranous. Peridium 5–25 μm wide, composed of brown to purple to hyaline cells of textura angularis. Hamathecium 2.5–6.5 μm wide, filamentous, septate, unbranched, constricted at the septum. Asci 85–110 × 14–20 μm ( x¯ = 97.5 × 17.5 μm, n = 20), 6-(8)-spored, unitunicate, clavate, apedicellate, apically rounded, straight to slight curved. Ascospores 25–30 × 10–12 μm ( x¯  = 27 × 10.8 μm, n = 20), 1–3-seriate, ellipsoidal, 2-celled, with a large upper cell and a smaller lower cell, with guttules, hyaline, smooth-walled, with a gelatinous sheath. Asexual morph: Conidiophores and conidiogenous cells were not observed. Conidia forming on culture, 13–17.5 µm ( x¯ = 16 µm, n = 20), globose to subglobose, dark brown, unicellular, smooth-walled, with guttules.

Culture characteristics: Ascospores germinate on PDA within 24 h. Colonies reached 60 mm after 20 days at 27 °C. The colonies are flat, white to reddish and produce red pigment on agar medium.

Material examined: CHINA, Yunnan Province, Dehong, Ruili, Jiexiang town (23°97′17″ N, 97°73′03″ E, 926 m), on dead branches of bamboo, 23 July 2023, L.S. Han & D.Q. Dai, HLS41 (GMB-W1011, holotype), ex-type GMBCC1011; ibid. (MHZU 24-0623, isotype), ex-isotype ZHKUCC 24-1160; ibid. HLS90 (GMB-W1012, isotype), ex-isotype GMBCC1012.

Notes: Phylogenetic analyses showed that newly generated strains GMBCC1011 and GMBCC1012 formed a sister branch to Ap. garethjonesii (D.Q. Dai & H.B. Jiang) Pintos & P. Alvarado (KUMCC 16-0202, ex-type) with 90% ML and 0.99 BI support ( Figure 1 ). However, tef1-α and tub2 data of Ap. garethjonesii (KUMCC 16-0202, ex-type) are unavailable in GenBank. Morphologically, Ap. dehongensis differs from Ap. garethjonesii in having smaller asci (85–110 × 14–20 μm vs. 125–154 × 35–42 μm) and ascospores (25–30 × 10–12 μm vs. 30–42 × 11–16 μm) (Dai et al., 2016). Moreover, our cultures produced red pigment on PDA ( Figures 2J, K ), which was not observed in Ap. garethjonesii (Dai et al., 2016). Hence, based on morphological and culture characteristics and DNA sequence analyses, we introduce our new collection as a new species, viz., Ap. dehongensis.

Apiospora jinghongensis L.S. Han & D.Q. Dai, sp. nov. ( Figure 3 )

Figure 3.

Figure 3

Apiospora jinghongensis (GMB-W1013, holotype). (A) Bamboo specimen. (B, C) Stromata developing on bamboo branches. (D) Vertical sections of stromata. (E, F) Peridium. (G) Paraphyses. (H–L) Asci. (M) Ascus with the rounded and smooth apex. (N–R) Ascospores [ascospore stained in Indian ink showing gelatinous sheath (R)]. Scale bars: (B) 2 mm, (C) 1 mm, (D) 300 μm, (E–L) 30 μm, and (M–R) 15 μm.

Index Fungorum Identifier: IF902464

Etymology: Named after the location “Jinghong” where the new taxon was collected.

Description: Saprobic on dead branches of bamboo. Sexual morph: Stromata 0.6–5.5 mm long, 250–400 μm wide, 175–200 high, filiform, with parallel black spots, raised when mature, still under the host surface, scattered to gregarious, 2–20-loculate. Locules 110–240 μm diameter × 150–185 μm high ( x¯ = 160 × 170 µm, n = 20), clustered, gregarious, immersed in stromata, forming groups, arranged in a row, ampulliform to obpyriform, usually with flattened base, brown to dark brown, membranous, with a periphysate ostiole in the center. Peridium 15–40 μm thick, composed of several layers, brown to hyaline cells of textura angularis. Hamathecium 1.5–4 μm wide, filamentous, hyaline, septate, unbranched paraphyses. Asci 85–105 × 13–20 μm ( x¯ = 91.5 × 16 μm, n = 20), 8-spored, unitunicate, clavate to cylindrical, apically rounded, slightly curved, short pedicel. Ascospores 22–28 × 6.5–7.5 μm ( x¯ = 23 × 6.7 μm, n = 20), biseriate, ellipsoidal, 1-septate, upper cell larger, and lower cell smaller, hyaline, smooth-walled, rounded at both ends, curved at the bottom, surrounded a gelatinous sheath. Asexual morph: Undetermined.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong city, Manzhang, Mengla (21°91′97″ N, 101°20′42″ E, 617 m), on dead branches of bamboo, 16 August 2020, L.S. Han & D.Q. Dai, DDQ1033 (GMB-W1013, holotype); ibid. (MHZU 24-0624, isotype); ibid. DDQ1033-1 (GMB-W1014, isotype).

Notes: The phylogenetic tree shows that our new collections GMB-W1013 and GMB-W10134 formed a distinct sister branch to Ap. multiloculata Zhang et al. (MFLUCC 21-0023) with 100% ML and 1.00 BI support ( Figure 1 ). Additionally, the nucleotide pairwise of new collections and Ap. multiloculata in ITS, LSU, and tub2 have 6.9% (37/535 bp), 0.8% (7/793 bp), and 9.7% (41/421 bp) differences, respectively. Morphologically, our new collection resembles Ap. multiloculata in having filiform stromata with central ostiole, 1-septate ascospores curved at the lower cell, but differs by having wider locules (110–240 μm vs. 88–160 μm) (Bhunjun et al., 2022). Although the new taxon morphologically resembles Ap. multiloculata, based on multigene phylogenetic analyses, we introduced Ap. jinghongensis.

Apiospora shangrilaensis L.S. Han & D.Q. Dai, sp. nov. ( Figure 4 )

Figure 4.

Figure 4

Apiospora shangrilaensis (GMB-W1019, holotype). (A) Bamboo specimen. (B) Stromata developing on bamboo branches. (C, D) Vertical sections of stromata. (E) Peridium. (F) Paraphyses. (G–J) Asci. (K–P) Ascospores [a ascospore stained in Indian ink showing gelatinous sheath (P)]. (Q) The germinating ascospore. (R, S) Cultures on PDA [upper (R), reverse (S)]. Scale bars: (C) 500 μm, (D, E, G–Q) 50 μm, (F) 15 μm.

Index Fungorum Identifier: IF902465

Etymology: Named after the location “Shangri-La” where the new taxon was collected.

Description: Saprobic on dead culms of bamboo. Sexual morph: Stromata 1–3.2 mm long, 200–400 μm wide, 185–210 μm high, elongated fusiform, raised with long, black axis broken at the apex, immersed, multi-loculate. Locules 200–250 μm diameter × 120–190 μm high ( x¯ = 228 × 157.5 µm, n = 20), gregarious, clustered, immersed in stromata, arranged in a row, ampulliform to subglobose with poor development base, pseudothecial, brown to dark brown. Peridium 10–25 µm wide, composed of three to five layers of hyaline to brown, cells of textura angularis. Hamathecium 2.5–4.5 µm wide, long, septate, slightly taping at the top, unbranched paraphyses. Asci 130–150 × 30–40 µm ( x¯ = 140 × 36.6 µm, n = 20), 8-spored, unitunicate, clavata, apically rounded, straight to slightly curved, with short pedicel. Ascospores 40–55 × 14–17 µm ( x¯ = 46.4 × 15.4 µm, n = 20), 1–2-seriate, ellipsoidal, aseptate when immature, 1-septate when mature, with a larger upper cell, and a smaller lower cell, occasionally with guttules, hyaline, smooth-walled, surrounded by a gelatinous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinating on PDA within 24 h. Colonies reached 30 mm diameter in 20 days under dark and at 27°C conditions. Colonies flat, circular, cottony, irregular edge, white from above, yellow in the center and outward gradually becoming pale yellow to white from below.

Materials examined: CHINA, Yunnan Province, Shangri-La City, Bigu mountain (27°36′56.9″N, 99°42′6.4″E, 3,460 m), on dead culms of bamboo, 21 July 2020, L.S. Han & D.Q. Dai, DDQ00801 (GMB-W1019, holotype), ex-type, GMBCC1019, ibid. (MHZU 24-0625, isotype), ex-isotype ZHKUCC 24-1161, ibid. DDQ00920 (GMB-W1020), living culture GMBCC1020.

Notes: In the phylogenetic analyses, our new isolates, GMBCC1019 and GMBCC1020, formed a distinct branch ( Figure 1 ). Morphologically, the new species is resembling Ap. hydei (Crous) Pintos & P. Alvarado (CBS 114990, ex-type) in having immersed, multi-loculate ascostromata, unitunicate asci, 1–septate, smooth-walled ascospores with a gelatinous sheath. However, our new collections can be distinguished from Ap. hydei (CBS 114990, ex-type) by having longer and wider asci (130–150 × 30–40 µm vs. 110–130 × 17–24 µm) and wider ascospores (40–55 × 14–17 µm vs. 35–45 × 8.5–11 µm) (Dai et al., 2016; Zeng et al., 2022). Hence, we introduced Ap. shangrilaensis as a new member of Apiospora based on morphological characteristics and phylogeny.

Apiospora zhaotongensis L.S. Han & D.Q. Dai, sp. nov. ( Figure 5 )

Figure 5.

Figure 5

Apiospora zhaotongensis (GMB-W1015, holotype). (A) Bamboo specimen. (B, C) Stromata developing on bamboo branches. (D, E) Vertical sections of stromata. (F) Peridium. (G) Paraphyses. (H–L) Asci. (M–R) Ascospores. (R) The ascospore stained in Indian ink showing gelatinous sheath. (S, T) Cultures on PDA [upper (S), reverse (T)]. Scale bars: (B) 1.5 mm, (C) 1 mm, (D, E) 300 μm, (F, H–L) 30 μm, and (G, M–R) 15 μm.

Index Fungorum Identifier: IF902466

Etymology: Named after the location “Zhaotong” where the new taxon was discovered.

Description: Saprobic on dead branches of bamboo. Sexual morph: Stromata 55–270 μm long, 250–450 μm wide, 140–180 μm high, naviculate or filiform, raised but still under on the host tissue with a slit-like opening at the top, scattered to gregarious, uniloculate to multi-loculate, black. Locules 150–290 diameter × 100–170 μm high ( x¯ = 250 × 130 µm, n = 20), immersed in stromata, scattered or clustered, dark brown to black, obpyriform to subglobose, with a central ostiole, papillate. Peridium 25–45 μm thick, composed of several layers, dark brown to hyaline cells of textura angularis. Hamathecium 2.5–4.5 μm wide, filamentous distinctly septate, constricted at the septum, unbranched paraphyses, with guttules. Asci 85–110 × 14–20 μm ( x¯ = 97.5 × 17.5 μm, n = 20), 8-spored, unitunicate, cylindrical, straight to slightly curved, apically rounded, apedicellate. Ascospores 30–40 × 6–7.5 μm ( x¯ = 36 × 6.5 μm, n = 20), overlapping, 2-seriate, 1-sepetate, conical at both ends, with a larger upper cell and a smaller lower cell, some with guttules, hyaline, smooth-walled, mostly straight, sometimes slightly curved, surrounded by a gelatinous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinate on PDA within 24 h. Colonies reached 60 mm after 20 days at 27°C. The colonies are white, fluffy, cottony, with irregular edge.

Material examined: CHINA, Yunnan Province, Zhaotong City, Zhenxiong Town (27°62′52″N, 104°81′98″E), on dead branches of bamboo, 4 August 2023, L.S. Han & D.Q. Dai, HLS110 (GMB-W1015, holotype), ex-type GMBCC1015; ibid. (MHZU 24-0626, isotype), ex-isotype, ZHKUCC 24-1162; ibid. HLS110-1 (GMB-W1016, isotype), GMBCC1016 (ex-isotype).

Notes: Two newly generated strains, GMBCC1015 and GMBCC1016, are phylogenetically close to Ap. zhenxiongensis (GMBCC1017 ex-type, GMBCC1018) ( Figure 1 ). Morphologically, the new taxon can be distinguished from Ap. zhenxiongensis in having ascospores conical at both ends, whereas Ap. zhenxiongensis ascospores are rounded at both ends. Moreover, Ap. zhaotongensis has straighter ascospores at the bottom than Ap. zhenxiongensis. Therefore, we introduce a novel species, Ap. zhaotongensis, to accommodate our new collection based on morphology and phylogeny.

Apiospora zhenxiongensis L.S. Han & D.Q. Dai, sp. nov. ( Figure 6 )

Figure 6.

Figure 6

Apiospora zhenxiongensis (GMB-W1017, holotype). (A) Bamboo specimen. (B, C) Stromata developing on bamboo branches. (D, E) Vertical sections of stromata. (F) Paraphyses. (G) Peridium. (H–L) Asci. (M–R) Ascospores [a ascospore stained in Indian ink showing gelatinous sheath (R)]. (S, T) Cultures on PDA [upper (S), reverse (T)]. Scale bars: (B) 1.5 mm, (C) 500 μm, (D, E) 300 μm, (F, M–R) 15 μm, and (G, H–L) 30 μm.

Index Fungorum Identifier: IF902467

Etymology: Named after the location “Zhenxiong” where the new taxon was discovered.

Description: Saprobic on dead branches of bamboo. Sexual morph: Stromata 0.45–1.6 mm long, 200–450 μm wide, 140–160 μm high, raised, with a slit-like opening at the top, dark brown to black, scattered to gregarious, naviculate or filiform, multi-loculate. Locules 130–230 μm diameter × 90–150 μm high ( x¯ = 183 × 128 µm, n = 20), immersed in stromata, arranged in a row, obpyriform to ampulliform, dark brown to black. Ostiole 30–60 µm wide, 35–65 µm high, with a black papillate. Peridium 5–25 μm thick, composed of several layers of brown cells of textura angularis. Hamathecium 3–8 μm wide, hyaline, septate, unbranched paraphyses. Asci 80–110 × 15–25 μm ( x¯ = 95 × 19 μm, n = 20), 8-spored, unitunicate, cylindrical, apically rounded, with short pedicel. Ascospores 30–40 × 6–8.5 μm ( x¯ = 34 × 7.5 μm, n = 20), overlapping, biseriate, ellipsoidal, rounded at both ends, 1-sepetate, cell above septa larger than those below, with guttules, hyaline, smooth-walled, distinctly curved at lower cell when mature, with a gelatinous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinate on PDA within 24 h. Colonies reached 60 mm after 20 days at 27°C. The colonies are flat, white from above and below, dense, circular, cottony, with regular edge.

Material examined: CHINA, Yunnan Province, Zhaotong City, Zhenxiong (27°63′28″ N, 104°81′85″ E, 1,559 m), on dead branches of bamboo, 4 August 2023, L.S. Han & D.Q. Dai, HLS107 (GMB-W1017, holotype), ex-type GMBCC1017; ibid. (MHZU 24-0627, isotype), ex-isotype, ZHKUCC 24-1163; ibid. HLS136 (GMB-W1018), living culture GMBCC1018.

Notes: In our phylogenetic analyses, GMBCC1017 and GMBCC1018 formed a sister branch to Ap. zhaotongensis (GMBCC1015, ex-type and GMBCC1016) (99% ML, 1.00 BP, Figure 1 ). Morphologically, the new collections can be distinguished from Ap. zhaotongensis in having ascospores with rounded ends at both ends, while Ap. zhaotongensis ascospores have conical ends. Moreover, the ascospores of the new isolate are more curved at the lower cell than Ap. zhaotongensis. Hence, we introduced Ap. zhenxiongensis to accommodate our new collections based on morphological comparisons coupled with molecular data.

Apiospora globosa J.Y. Zhang & Y.Z. Lu, Journal of Fungi 9 (no. 1,096) (2023) ( Figure 7 )

Figure 7.

Figure 7

Apiospora globosa (GMB-W1021) (A) Bamboo specimen. (B, C) Stromata developing on bamboo branches. (D) Vertical sections of stromata. (E) Peridium. (F–J) Asci. (K–O) Ascospores surrounded by a gelatinous sheath. (P) A germinating ascospore. (Q, R) Cultures on PDA [upper (Q), reverse (R)]. Scale bars: (D) 300 μm, (E–J) 50 μm, and (K–P) 20 μm.

Index Fungorum Identifier: IF 901402

Description: Saprobic on dead culms of bamboo. Sexual morph: Stromata 0.45–3.3 mm long, 200–300 µm wide, 260–300 µm high, brown to black, fusiform, with stromata breaking through raised cracks at the black center, immersed, gregarious, multi-loculate. Locules 180–255 μm diameter × 100–240 μm high ( x¯ = 222 × 164.5 µm, n = 20), gregarious, clustered, immersed in stromata, arranged in a row, obpyriform to ampulliform, ostiole with periphyses, membranous, brown to dark brown. Peridium 10–50 µm thick, composed of several layers of brown to hyaline, cells of textura angularis. Asci 100–135 × 21–25 µm ( x¯ = 115.8 × 22.4 µm, n = 20), 4-(8)-spored, unitunicate, broadly cylindrical to clavate, with a short pedicel, straight to slightly curved, apically rounded. Ascospores 32–40 × 10–12.5 µm ( x¯ = 34.6 × 11.3 µm, n = 20), 1–2-seriate, elliptical, 1–septate, with a larger upper cell, and a small lower cell, hyaline, with many guttules, smooth-walled, curved, constricted at the septum, surrounded by an entire gelatinous sheath. Asexual morph: Endophytic in the stems of Dicranopteris linearis, see Zhang et al. (2023a).

Culture characteristics: Ascospores germinate on PDA within 24 h. Colonies reached 55 mm after 20 days at 27°C. The colonies are white to pale reddish from above, pale reddish from below, circular, cottony, flat, spreading, with irregular edge.

Material examined: CHINA, Yunnan Province, Zhaotong City, Zhenxiong town (27°63′36″N, 104°81′84″E, 1,577 m), on dead culms of bamboo, 4 August 2023, L.S. Han & D.Q. Dai, HLS126 (GMB-W1021, first report of the sexual morph), living culture, GMBCC1021.

Notes: Apiospora globosa J.Y. Zhang & Y.Z. Lu was originally described by Zhang et al. (2023a) based on the asexual morph from a healthy stem of Dicranopteris linearis (KUNCC 23-14210, ex-type) collected from Guizhou Province, China. Our phylogenetic results ( Figure 1 ) indicated that the strain GMBCC1021 is identical to the ex-type of Ap. globosa (KUNCC 23-14210, ex-type) with 100% MLBP and 1.00 BYPP statistic support. Moreover, the base pair arrangement of our collections with KUNCC 23-14210 is identical. Hence, in this study, we report the sexual morph of Ap. globosa for the first time.

Apiospora guangdongensis C.F. Liao & Doilom, Journal of Fungi 9 (no. 1,087): 12 (2023) ( Figure 8 )

Figure 8.

Figure 8

Apiospora guangdongensis (GMB-W1022) (A) Bamboo specimen. (B, C) Stromata developing on bamboo branches. (D) Vertical sections of stromata. (E) Peridium. (F) Paraphyses. (G–K) Asci. (L–Q) Ascospore [a ascospore stained in Indian ink showing gelatinous sheath (Q)]. (R) A germinating ascospore. (S, T) Cultures on PDA [upper (S), reverse (T)]. Scale bars: (D) 150 μm, (E, G–K) 30 μm, (F) 10 μm, and (L–R) 15 μm.

Index Fungorum Identifier: IF 225951

Description: Saprobic on dead culms of bamboo. Sexual morph: Stromata 0.4–2.8 mm long, 250–350 mm wide, 130–190 μm high, raised on the host surface, with blackspots on slit-like opening, immersed, scattered to gregarious, 1–5-loculate, fusiform, brown. Locules perithecial, 210–380 μm diameter × 110–180 μm high ( x¯ = 269 × 145 µm, n = 20), gregarious, clustered, immersed in stromata, arranged in a row, obpyriform to ampulliform to subglobose. Ostiole central, with periphyses. Peridium 5–25 μm wide, composed of dark brown to purple to hyaline cells of textura angularis. Hamathecium 2.5–4.5 μm wide, hyaline, septate, constricted at the septum, unbranched, not anastomosed paraphyses. Asci 90–120 × 16–21 μm ( x¯ = 102 × 18 μm, n = 20), 8-spored, unitunicate, cylindrical, apically rounded, with a short pedicel, slightly curved. Ascospores 26–35 × 6.5–10 μm ( x¯ = 31.5 × 8 μm, n = 20), biseriate, ellipsoidal, 2-celled, with a larger upper cell and a smaller lower cell, with guttules, hyaline, smooth-walled, rounded at both ends, with a gelatinous sheath.

Culture characteristics: Ascospores germinate on PDA within 24 h. Colonies reached 60 mm after 20 days at 27°C. The colonies are floccose, white, circular, cottony, with regular edge, no pigment.

Materials examined: CHINA, Yunnan Province, Zhaotong City, Zhenxiong town (27°63′28″ N, 104°81′88″ E, 1,557 m), on dead culms of bamboo, 4 August 2023, L.S. Han & D.Q. Dai, HLS51 (GMB-W1022, first report of the sexual morph), living culture GMBCC1022, GMB-W1023; ibid. HLS133 (GMB-W1023), living culture GMBCC1023.

Notes: Asexually typified, endophytic species, Apiospora guangdongensis C.F. Liao & Doilom (ZHKUCC 23-0004, ex-type) (from the leaves of Wurfbainia villosa) was originally described by Liao et al. (2023) from Guangdong Province, China. Our multi-gene phylogenetic tree ( Figure 1 ) showed that our new isolates GMBCC1022 and GMBCC1023 grouped with Ap. guangdongensis (ZHKUCC 23-0004, ex-type). Moreover, the base pair arrangement of our collections with ZHKUCC 23-0004 was identical. Therefore, we reported the sexual morph of Ap. guangdongensis for the first time in this study.

Apiospora subglobosa (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 207 (2021) ( Figure 9 )

Figure 9.

Figure 9

Apiospora subglobosa (GMB-W1024) (A) Bamboo specimen. (B–D) Stromata developing on bamboo branches. (E) Vertical sections of stromata. (F) Peridium. (G–K) Asci. (L) Paraphyses. (M–R) Ascospores surrounded by a gelatinous sheath. Scale bars: (B–D) 2 mm, (E) 300 μm, (F–I, K) 30 μm, and (L–R) 15 μm.

Index Fungorum Identifier: IF 837715

See Senanayake et al. (2015) for the description.

Material examined: CHINA, Yunnan Province, Dehong, Mang City, Xuangang town (24°45′41″N, 98°43′83″E, 919 m), on dead culms of bamboo, 22 July 2023, L.S. Han & D.Q. Dai, HLS84 (GMB-W1024, new geographical record in China).

Known distributions: Thailand (Senanayake et al., 2015) and China (this study).

Known hosts: Bamboo (Senanayake et al., 2015, this study).

Notes: Senanayake et al. (2015) introduced Arthrinium subglobosum D.Q. Dai & K.D. Hyde, but later, Pintos and Alvarado (2021) transferred it to Apiospora s. str. as Apiospora subglobosa (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado. In our phylogenetic tree, our new collection GMB-W1024 clustered with Ap. subglobosa (MFLUCC 11-0397, ex-type) with 100% ML and 1.00 BI support ( Figure 1 ). Morphologically, our new collection is similar to Ap. subglobosa in muti-loculate stromata with black slit-like opening, straight or curved, apical cell large, with smaller basal cell ascospores. However, the asci of GMB-W1024 are narrower than in MFLU 15-0384 (20–25 µm vs. 27–36 µm) (holotype). The ascospores of GMB-W1024 are longer than those of MFLU 15-0384 (25–33 µm vs. 24–28 µm) but narrower (7–10 μm vs. 8.5–12.5 μm), possibly due to the environmental change leading to slight differences in size. Nevertheless, we confirmed that our new collection (GMB-W1024) is Ap. subglobosa based on phylogenetic analyses ( Figure 1 ).

4. Discussion

Fungal diversity in southwestern China is very high and a large number of species are introduced annually (Wijayawardene et al., 2021a; Lu et al., 2024; Du et al., 2023; Zhang et al., 2023b, 2024; Chen et al., 2024; Liu et al., 2023a; Tian et al., 2024; Xu et al., 2024; Zhang et al., 2024). Fungi associated with bamboo is one of the popular research topics among the mycologists in this region and several new species have been published in recent studies (e.g., Bambusicola hongheensis fide Phookamsak et al., 2024, Parabambusicola yunnanensis fide Han et al., 2023, Paramphibambusa bambusicola fide Han et al., 2024). However, a large number of taxa are yet to be discovered in this region and from bamboo plants, although it has been a well-studied host (Wijayawardene et al., 2021b, 2022).

In this study, we introduced five new species, viz., Apiospora dehongensis, Ap. jinghongensis, Ap. shangrilaensis, Ap. zhaotongensis, and Ap. zhenxiongensis, and two new sexual morph reports, viz., Ap. globosa and Ap. guangdongensis. Furthermore, one new geographical record of Ap. subglobosa was also reported based on morphological and multi-locus phylogenetic analyses. All the species were found as saprobic taxa on decaying bamboo branches and culms. Three specimens were collected from western Yunnan Province, China (Dehong), two specimens were obtained from the southwestern part (Xishuangbanna), seven specimens were collected from the northeastern section (Zhaotong), and two specimens were gathered from the northwestern part (Shangri-La), which displayed the highly hidden species richness of Apiospora in the different regions of Yunnan. Jiang et al. (2022b) and Wang et al. (2018) also emphasized the high species richness of bambusicolous ascomycetes in southwest China, with Apiospora as one of the genera with high species diversity. Thus, ongoing research on the genus Apiospora is essential.

According to the recently published studies, 90 species of Apiospora have been reported to have only an asexual morph, 19 species have been reported to have only a sexual morph, and 22 species have both morphs based on molecular data, including this study (Pintos and Alvarado, 2021; Li et al., 2023; Zhang et al., 2023a; Zhao et al., 2023; Ai et al., 2024; Dissanayake et al., 2024; Liu et al., 2024; Tian et al., 2024; Yan and Zhang, 2024; Zhao et al., 2024). Moreover, regarding the reports of Apiospora discovered on bamboo (based on molecular data), 17 species have been identified solely by their asexual morph, while 15 species have sexual morph only. However, 12 species have been reported with both morphs (Pintos and Alvarado, 2021; Liao et al., 2023; Zhao et al., 2023, 2024; Zhang et al., 2023a; Ai et al., 2024; Dissanayake et al., 2024). Therefore, it is necessary to continue studying bambusicolous Apiospora to explore more asexual or sexual morphs of known or unknown species. Furthermore, because some Apiospora species were reported to have only asexual or sexual forms, it is crucial to collect more specimens in nature to clarify the status of these species in the genus Apiospora.

Note that most of the Apiospora species reported from bamboo are saprobes, while only Ap. dongyingensis Liu et al. and Ap. hainanensis Liu et al. have been reported as pathogens (Liao et al., 2023; Liu et al., 2023b). Jiang et al. (2020) emphasized the importance of researching on bambusicolous pathogenic fungi, because pathogenic fungi have the potential to hinder the advancement of the bamboo industry and even lead to ecological problems. So far, more than 190 bambusicolous pathogenic fungi have been discovered (Kuai, 1996). The continuous study of bamboo pathogenic fungi is related to the conservation and utilization of bamboo resources, which is of great significance to the promotion of sustainable development. Thus, more search works on bambusicolous pathogenic fungi are needed.

Funding Statement

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was supported by the Yunnan Revitalization Talents Support Plan (Young Talents Program and High-End Foreign Experts Program), the National Natural Science Foundation of China (No. NSFC 32460002 and No. NSFC 32060710), and the Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River for supporting this study. The authors further extend their appreciation to the Meemann Chang Academician Workstation in Yunnan Province (202225AF150002), Yunnan Province Young and Middle-aged Academic and Technical Leaders Reserve Talents Program (202305AC350252), and the General Programs of the Provincial Department of Science and Technology (202101BA070001-076). L-SH would like to thank the Faculty of Science and Graduate School, Chiang Mai University, for supporting the tuition fee for MSc. In addition, the authors extend their appreciation to the Researchers supporting Project Number (RSP2024R120) King Saud University, Riyadh, Saudi Arabia.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, ITS: PQ140160, PQ140161, PQ140162, PQ111492, PQ111493, PQ111494, PQ111495, PQ111496, PQ111497, PQ111498, PQ111499, PQ111500, PQ111501, PQ111502; LSU: PQ140163, PQ140164, PQ140165, PQ111481,PQ111482, PQ111483, PQ111484, PQ111485, PQ111486PQ111487 PQ111488, PQ111489, PQ111490, PQ111491; tub2: PQ463971, PQ463972, PQ463973, PQ463974, PQ463975, PQ463976, PQ463977, PQ463978 PQ463979, PQ463980, PQ463981, PQ164976, PQ164977; tef1-α: PQ464016, PQ464017, PQ464018, PQ464019, PQ464020, PQ464021, PQ464022, PQ464023, PQ464024, PQ464025, PQ464026, PQ464027, PQ164974, PQ164975.

Author contributions

L-SH: Writing – original draft, Writing – review & editing, Data curation, Methodology, Software. CL: Writing – review & editing, Data curation, Writing – original draft. D-QD: Funding acquisition, Methodology, Writing – review & editing, Visualization. IP: Methodology, Writing – review & editing, Software, Visualization. AE: Funding acquisition, Methodology, Writing – review & editing. SA-R: Writing – review & editing, Funding acquisition. QL: Writing – review & editing, Funding acquisition, Methodology. NW: Methodology, Writing – review & editing, Data curation, Software.

Conflict of interest

The authors declare the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Ai C. C., Dong Z. X., Yun J. X., Zhang Z. X., Xia J. W., Zhang X. G. (2024). Phylogeny, taxonomy and morphological characteristics of Apiospora (Amphisphaeriales, Apiosporaceae). Microorganisms. 12, 1372. doi:  10.3390/microorganisms12071372 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagherabadi S., Zafari D., Anvar F. G. (2014). First report of leaf spot caused by Arthrinium arundinis on rosemary in Iran. J. Plant Pathol. 96, 4–126. doi:  10.4454/JPP.V96I4.017 [DOI] [Google Scholar]
  3. Bhunjun C. S., Niskanen T., Suwannarach N., Wannathes N., Chen Y. J., McKenzie E. H., et al. (2022). The numbers of fungi: are the most speciose genera truly diverse? Fungal Diversity. 114, 387–462. doi:  10.1007/s13225-022-00501-4 [DOI] [Google Scholar]
  4. Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25, 1972–1973. doi:  10.1093/bioinformatics/btp348 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carbone I., Kohn L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91, 553–556. doi:  10.1080/00275514.1999.12061051 [DOI] [Google Scholar]
  6. Chen K., Wu X. Q., Huang M. X., Han Y. Y. (2014). First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis. 98, 1274. doi:  10.1094/PDIS-02-14-0165-PDN [DOI] [PubMed] [Google Scholar]
  7. Chen X. M., Tang X., Ma J., Liu N. G., Tibpromma S., Karunarathna S. C., et al. (2024). Identification of two new species and a new host record of Distoseptispora (Distoseptisporaceae, Distoseptisporales, Sordariomycetes) from terrestrial and freshwater habitats in Southern China. MycoKeys. 102, 83. doi:  10.3897/mycokeys.102.115452 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clements F. E., Shear C. L. (1931). The genera of fungi (New York, USA: H.W. Wilson company publishing; ), 1–496. [Google Scholar]
  9. Dai D. Q., Jiang H. B., Tang L. Z., Bhat D. J. (2016). Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere. 7, 1332–1345. doi:  10.5943/mycosphere/7/9/7 [DOI] [Google Scholar]
  10. Dai D. Q., Phookamsak R., Wijayawardene N. N., Li W. J., Bhat D. J., Xu J. C., et al. (2017). Bambusicolous fungi. Fungal Diversity. 82, 1–105. doi:  10.1007/s13225-016-0367-8 [DOI] [Google Scholar]
  11. Dissanayake L. S., Samarakoon M. C., Maharachchikumbura S. S. N., Hyde K. D., Tang X., Mortimer P. E., et al. (2024). Exploring the taxonomy and phylogeny of Sordariomycetes taxa emphasizing Xylariomycetidae in Southwestern China. Mycosphere. 15, 1675–1793. doi:  10.5943/mycosphere/15/1/15 [DOI] [Google Scholar]
  12. Du T. Y., Dai D. Q., Mapook A., Lu L., Stephenson S. L., Suwannarach N., et al. (2023). Additions to rhytidhysteron (Hysteriales, dothideomycetes) in China. J. Fungi. 9, 148. doi:  10.3390/jof9020148 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feng Y., Liu J. K., Lin C. G., Chen Y. Y., Xiang M. M., Liu Z. Y. (2021). Additions to the genus arthrinium (Apiosporaceae) from bamboos in China. Front. Microbiol. 12, e661281. doi:  10.3389/fmicb.2021.661281 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glass N. L., Donaldson G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330. doi:  10.1128/aem.61.4.1323-1330.1995 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall T. (2004). BioEdit (Carlsbad, CA, 92008, USA: Ibis Therapeutics; ). Available online at: http://www.mbio.ncsu.edu/BioEdit/bioedit.html/ (Accessed 26 Jan 2024). [Google Scholar]
  16. Han L. S., Dai D. Q., Du T. Y., Wijayawardene N. N., Promputtha I., Bhat D. J., et al. (2023). Taxonomy and phylogenetic studies revealed Parabambusicola yunnanensis sp. nov. (Parabambusicolaceae, Pleosporales) on bamboo from Yunnan, China. Phytotaxa. 589, 245–258. doi:  10.11646/phytotaxa.589.3.3 [DOI] [Google Scholar]
  17. Han L. S., Wijayawardene N. N., Liu C., Han L. H., Promputtha I., Li Q., et al. (2024). Paramphibambusa bambusicola gen. et. sp. nov., Arecophila xishuangbannaensis and A. zhaotongensis spp. nov. in Cainiaceae from Yunnan, China. MycoKeys. 104, 113. doi:  10.3897/mycokeys.104.117872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hyde K. D., Fröhlich J., Taylor J. E. (1998). Fungi from palms XXXVI - Refl ections on unitunicate ascomycetes with apiospores. Sydowia. 50, 21–80. [Google Scholar]
  19. Index Fungorum (2024). Available online at: http://www.indexfungorum.org (Accessed 17 Jan 2024).
  20. Jiang H. B., Phookamsak R., Hongsanan S., Bhat D. J., Mortimer P. E., Suwannarach N., et al. (2022. b). A review of bambusicolous Ascomycota in China with an emphasis on species richness in southwest China. Stud. Fungi. 7, 1–33. doi:  10.48130/SIF-2022-0020 [DOI] [Google Scholar]
  21. Jiang N., Tian C. M. (2021). The holomorph of Arthrinium setariae sp. nov. (Apiosporaceae, Xylariales) from China. Phytotaxa. 483, 149–159. doi:  10.11646/phytotaxa.483.2.7 [DOI] [Google Scholar]
  22. Jiang N., Liang Y. M., Tian C. M. (2020). A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales). Sydowia. 72, 77–83. doi:  10.12905/0380.sydowia72-2020-0077 [DOI] [Google Scholar]
  23. Jiang N., Voglmayr H., Ma C. Y., Xue H., Piao C. G., Li Y. (2022. a). A new Arthrinium-like genus of Amphisphaeriales in China. MycoKeys. 92, 27–43. doi:  10.3897/mycokeys.92.86521 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi:  10.1093/molbev/mst010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuai S. Y. (1996). A check-list of pathogenic bambusicolous fungi of mainland China and Taiwan. J. For. Sci. Technology. 4, 64–71. [Google Scholar]
  26. Kwon S. L., Cho M., Lee Y. M., Lee H., Kim C., Kim G. H., et al. (2022). Diversity of the bambusicolous fungus apiospora in Korea: discovery of new apiospora species. Mycobiology. 50, 302–316. doi:  10.1080/12298093.2022.2133808 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larsson A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 30, 3276–3278. doi:  10.1093/bioinformatics/btu531 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li S., Peng C., Yuan R., Tian C. (2023). Morphological and phylogenetic analyses reveal three new species of Apiospora in China. MycoKeys. 99, 297. doi:  10.3897/mycokeys.99.108384 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liao C. F., Senanayake I. C., Dong W., Thilini Chethana K. W., Tangtrakulwanich K., Zhang Y., et al. (2023). Taxonomic and phylogenetic updates on Apiospora: introducing four new species from Wurfbainia villosa and grasses in China. J. Fungi. 9, 1087. doi:  10.3390/jof9111087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu R. Y., Li D. H., Zhang Z. X., Liu S. B., Liu X. Y., Wang Y. X., et al. (2023. b). Morphological and phylogenetic analyses reveal two new species and a new record of Apiospora (Amphisphaeriales, Apiosporaceae) in China. MycoKeys. 95, 27. doi:  10.3897/mycokeys.95.96400 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu X. F., Tibpromma S., Hughes A. C., Chethana K. W. T., Wijayawardene N. N., Dai D. Q., et al. (2023. a). Culturable mycota on bats in central and southern Yunnan Province, China. Mycosphere. 14, 497–662. doi:  10.5943/mycosphere/14/1/7 [DOI] [Google Scholar]
  32. Liu X., Zhang Z., Wang S., Zhang X. (2024). Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) on Indocalamus longiauritus, Adinandra glischroloma and Machilus nanmu from Hainan and Fujian, China. J. Fungi. 10, 74. doi:  10.3390/jof10010074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lu W. H., Suwannarach N., Lumyong S., Elgorban A. M., Dai D. Q., Dutta A. K., et al. (2024). Molecular phylogeny and morphology reveal two new species of Conocybe (Bolbitiaceae, Agaricales) from southwest China. New Z. J. Botany., 1–18. doi:  10.1080/0028825X.2024.2327117 [DOI] [Google Scholar]
  34. Ma X. (2016). Study on complete mitochondrial genome of Cypridopsis vidua and molecular phylogeny of Ostracoda. East China Normal University, Shanghai, China. [Google Scholar]
  35. Martínez-Cano C., Grey W. E., Sands D. C. (1992). First report of Arthrinium arundinis causing kernel blight on barley. Plant Dis. 76, e1077. doi:  10.1094/PD-76-1077B [DOI] [Google Scholar]
  36. Mavragani D. C., Abdellatif L., McConkey B., Hamel C., Vujanovic V. (2007). First report of damping-off of durum wheat caused by Arthrinium sacchari in the semi-arid Saskatchewan fields. Plant Disease. 91, e469. doi:  10.1094/PDIS-91-4-0469A [DOI] [PubMed] [Google Scholar]
  37. Monkai J., Phookamsak R., Tennakoon D. S., Bhat D. J., Xu S., Li Q., et al. (2022). Insight into the taxonomic resolution of Apiospora: introducing novel species and records from bamboo in China and Thailand. Diversity. 14, 918. doi:  10.3390/d14110918 [DOI] [Google Scholar]
  38. O'Donnell K., Kistler H. C., Cigelnik E., Ploetz R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U.S.A. 95, 2044–2049. doi:  10.1073/pnas.95.5.2044 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Phookamsak R., Hongsanan S., Bhat D. J., Wanasinghe D. N., Promputtha I., Suwannarach N., et al. (2024). Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses. MycoKeys 104, 9–50. doi:  10.3897/mycokeys.104.112149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pintos Á., Alvarado P. (2021). Phylogenetic delimitation of apiospora and arthrinium . Fungal Systematics Evol. 7, 197–221. doi:  10.3114/fuse.2021.07.10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rambaut A. (2012). FigTree v1. 4.0. a Graphical viewer of phylogenetictrees. Available online at: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed 3 January 2023).
  42. Rannala B., Yang Z. (1996). Probability distribution of molecular evolutionary trees, a new method of phylogenetic inference. J. Mol. Evolution. 43, 304–311. doi:  10.1007/BF02338839 [DOI] [PubMed] [Google Scholar]
  43. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi:  10.1093/sysbio/sys029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Saccardo P. (1875). Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositorum. Atti Soc Veneziana-Trent.-Istriana Sci. Nat. 4, 77–100. [Google Scholar]
  45. Samuels G., McKenzie E., Buchanan D. E. (1981). Ascomycetes of New Zealand 3. Two new species of Apiospora and their Arthrinium anamorphs on bamboo. N. Z. J. Bot. 19, 137–149. doi:  10.1080/0028825X.1981.10425113 [DOI] [Google Scholar]
  46. Senanayake I. C., Maharachchikumbura S. S., Hyde K. D., Bhat J. D., Jones E. G., McKenzie E. H., et al. (2015). Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity. 73, 73–144. doi:  10.1007/s13225-015-0340-y [DOI] [Google Scholar]
  47. Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30, 1312–1313. doi:  10.1093/bioinformatics/btu033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stamatakis A., Hoover P., Rougemont J. (2008). A rapid bootstrap algorithm for the ML web servers. Syst. Biol. 57, 758–771. doi:  10.1080/10635150802429642 [DOI] [PubMed] [Google Scholar]
  49. Tian X. G., Bao D. F., Karunarathna S. C., Jayawardena R. S., Hyde K. D., Bhat D. J., et al. (2024). Taxonomy and phylogeny of ascomycetes associated with selected economicallyimportant monocotyledons in China and Thailand. Mycosphere. 15, 1–274. doi:  10.5943/mycosphere/15/1/1 [DOI] [Google Scholar]
  50. Tian X. G., Karunarathna S. C., Mapook A., Promputtha I., Xu J., Bao D. F., et al. (2021). One new species and two new host records of Apiospora from bamboo and maize in Northern Thailand with thirteen new combinations. Life. 11, 1071. doi:  10.3390/life11101071 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vaidya G., Lohman D. J., Meier R. (2011). Sequence Matrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 27, 171–180. doi:  10.1111/j.1096-0031.2010.00329.x [DOI] [PubMed] [Google Scholar]
  52. Vilgalys R., Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4238–4246. doi:  10.1128/jb.172.8.4238-4246.1990 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wang M., Tan X. M., Liu F., Cai L. (2018). Eight new Arthrinium species from China. MycoKeys. 1, 1–24. doi:  10.3897/mycokeys.34.24221 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. White T., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: a guide to methods and applications. Eds. Innis M., Gelfand D., Shinsky J., White T. (Academic Press, New York: ), 315–322 pp. [Google Scholar]
  55. Wijayawardene N. N., Dissanayake L. S., LI Q. R., Dai D. Q., Xiao Y., Wen T. C., et al. (2021. a). Yunnan–Guizhou Plateau: a mycological hotspot. Phytotaxa. 523, 1–31. doi:  10.11646/phytotaxa.523.1.1 [DOI] [Google Scholar]
  56. Wijayawardene N. N., Hyde K. D., Dai D. Q., Sánchez-García M., Goto B. T., Saxena R. K., et al. (2022). Outline of fungi and fungus-like taxa – 2021. Mycosphere. 13, 53–453. doi:  10.5943/mycosphere/13/1/2 [DOI] [Google Scholar]
  57. Wijayawardene N. N., Phillips A. J. L., Tibpromma S., Dai D. Q., Selbmann L., Monteiro J. S., et al. (2021. b). Looking for the undiscovered asexual taxa; case studies from lesser studied life modes and habitats. Mycosphere. 12, 1186–1229. doi:  10.5943/mycosphere/12/1/17 [DOI] [Google Scholar]
  58. Xu R. F., Karunarathna S. C., Phukhamsakda C., Dai D. Q., Elgorban A. M., Suwannarach N., et al. (2024). Four new species of Dothideomycetes (Ascomycota) from Pará Rubber (Heveabrasiliensis) in Yunnan Province, China. MycoKeys. 103, 71. doi:  10.3897/mycokeys.103.117580 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yan X. N., Zhang C. L. (2024). Three new endophytic Apiospora species (Apiosporaceae, Amphisphaeriales) from China. MycoKeys. 105, 295. doi:  10.1094/PDIS-06-20-1159-PDN [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zeng Y., Luo M., Wei T., Zhang H., Jia W., Jiang Y. (2024). First report of Apiospora hysterina causing leaf spot on faba bean (Vicia faba). Crop Prot. 184, 106778. doi:  10.1016/j.cropro.2024.106778 [DOI] [Google Scholar]
  61. Zeng Q., Lv Y. C., Xu X. L., Deng Y., Wang F. H., Liu S. Y., et al. (2022). Morpho-molecular characterization of microfungi associated with Phyllostachys (Poaceae) in Sichuan, China. J. Fungi. 8, 702. doi:  10.3390/jof8070702 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zhang G. Q., Dai D. Q., Wijayawardene N. N., Promputtha I., Bhat D. J., Dawoud T. M., et al. (2023. b). Taxonomy and phylogeny of Hypoxylon zhaotongensis sp. nov. (Hypoxylaceae, Xylariales), a bambusicolous fungus from Yunnan, China. Phytotaxa. 598, 111–123. doi:  10.11646/phytotaxa.598.2.1 [DOI] [Google Scholar]
  63. Zhang J. Y., Chen M. L., Boonmee S., Wang Y. X., Lu Y. Z. (2023. a). Four new endophytic Apiospora species isolated from three Dicranopteris species in Guizhou, China. J. Fungi. 9, 1096. doi:  10.3390/jof9111096 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zhang X., Karunarathna S. C., Tibpromma S., Du T. Y., Elgorban A. M., Lumyong S., et al. (2024). Morphology and phylogenetic analyses reveal Neopalmiascoma gen. nov. (Bambusicolaceae, Pleosporales) on Macadamia integrifolia in Yunnan Province, China. Phytotaxa 633, 230–240. doi:  10.11646/phytotaxa.633.3.3 [DOI] [Google Scholar]
  65. Zhao H. J., Dong W., Shu Y., Mapook A., Manawasinghe I., Doilom M., et al. (2023). Bambusicolous fungi in Guangdong, China: establishing Apiospora magnispora sp. nov. (Apiosporaceae, Amphisphaeriales) based on morphological and molecular evidence. Curr. Res. Environ. Appl. Mycol. 13, 1–15. doi:  10.5943/cream/13/1/1 [DOI] [Google Scholar]
  66. Zhao Z. Z., Mu T. C., Keyhani N. O., Pu H. L., Lin Y. S., Lv Z. Y., et al. (2024). Diversity and new species of ascomycota from bamboo in China. J. Fungi. 10, 454. doi:  10.3390/jof10070454 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zhaxybayeva O., Gogarten J. P. (2002). Bootstrap Bayesian probability and maximum likelihood mapping, exploring new tools for comparative genome analyses. MBC Genomics 3, 1–15. doi:  10.1186/1471-2164-3-4 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, ITS: PQ140160, PQ140161, PQ140162, PQ111492, PQ111493, PQ111494, PQ111495, PQ111496, PQ111497, PQ111498, PQ111499, PQ111500, PQ111501, PQ111502; LSU: PQ140163, PQ140164, PQ140165, PQ111481,PQ111482, PQ111483, PQ111484, PQ111485, PQ111486PQ111487 PQ111488, PQ111489, PQ111490, PQ111491; tub2: PQ463971, PQ463972, PQ463973, PQ463974, PQ463975, PQ463976, PQ463977, PQ463978 PQ463979, PQ463980, PQ463981, PQ164976, PQ164977; tef1-α: PQ464016, PQ464017, PQ464018, PQ464019, PQ464020, PQ464021, PQ464022, PQ464023, PQ464024, PQ464025, PQ464026, PQ464027, PQ164974, PQ164975.


Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES