Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 May;140(2):157–167. doi: 10.1042/bj1400157

Role of membrane-bound and free polyribosomes in the synthesis of cytochrome c in rat liver

Néstor F González-Cadavid 1, Carmen Sáez De Córdova 1
PMCID: PMC1167987  PMID: 4375958

Abstract

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaldi P., Rusca G., Calissano P. In vitro synthesis of a brain-specific protein (S-100) by free and membrane-bound polysomes. Biochim Biophys Acta. 1973 Apr 11;299(4):634–641. doi: 10.1016/0005-2787(73)90236-0. [DOI] [PubMed] [Google Scholar]
  2. Andrews T. M., Tata J. R. Protein synthesis by membrane-bound and free ribosomes of secretory and non-secretory tissues. Biochem J. 1971 Feb;121(4):683–694. doi: 10.1042/bj1210683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arias I. M., Doyle D., Schimke R. T. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem. 1969 Jun 25;244(12):3303–3315. [PubMed] [Google Scholar]
  4. Attardi B., Cravioto B., Attardi G. Membrane-bound ribosomes in HeLa cells. I. Their proportion to total cell ribosomes and their association with messenger RNA. J Mol Biol. 1969 Aug 28;44(1):47–70. doi: 10.1016/0022-2836(69)90404-5. [DOI] [PubMed] [Google Scholar]
  5. Brew K., Campbell P. N. Studies on the biosynthesis of protein by lactating guinea-pig mammary gland. Characteristics of the synthesis of alpha-lactalbumin and total protein by slices and cell-free systems. Biochem J. 1967 Jan;102(1):265–274. doi: 10.1042/bj1020265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell P. N. Functions of polyribosomes attached to membranes of animal cells. FEBS Lett. 1970 Mar 16;7(1):1–7. doi: 10.1016/0014-5793(70)80603-2. [DOI] [PubMed] [Google Scholar]
  7. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ekren T., Yatvin M. B. Distribution and incorporation of ( 3 H) orotic acid in free and membrane-bound ribosomes in rat liver after whole body -irradiation and prolonged fasting. Biochim Biophys Acta. 1972 Oct 11;281(2):263–269. doi: 10.1016/0005-2787(72)90178-5. [DOI] [PubMed] [Google Scholar]
  9. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaye P., Denamur R. Preferential synthesis of beta lactoglobulin by the bound polyribosomes of the mammary gland. Biochem Biophys Res Commun. 1970 Oct 9;41(1):266–272. doi: 10.1016/0006-291x(70)90498-5. [DOI] [PubMed] [Google Scholar]
  11. Gilbert J. M. Translation of messenger RNA fractions extracted from free and membrane bound rat forebrain ribosomes in a rabbit reticulocyte cell-free system. Biochem Biophys Res Commun. 1973 May 1;52(1):79–87. doi: 10.1016/0006-291x(73)90956-x. [DOI] [PubMed] [Google Scholar]
  12. González-Cadavid N. F., Ortega J. P., González M. The cell-free synthesis of cytochrome c by a microsomal fraction from rat liver. Biochem J. 1971 Oct;124(4):685–694. doi: 10.1042/bj1240685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodman D., Matzura H. An improved method of counting radioactive acrylamide gels. Anal Biochem. 1971 Aug;42(2):481–486. doi: 10.1016/0003-2697(71)90062-5. [DOI] [PubMed] [Google Scholar]
  14. Hallinan T., Murty C. N., Grant J. H. Early labeling with glucosamine-C14 of granular and agranular endoplasmic reticulum and free ribosomes from rat liver. Arch Biochem Biophys. 1968 Jun;125(3):715–720. doi: 10.1016/0003-9861(68)90505-5. [DOI] [PubMed] [Google Scholar]
  15. Hawley E. S., Greenawalt J. W. An assessment of in vivo mitochondrial protein synthesis in Neurospora crassa. J Biol Chem. 1970 Jul 25;245(14):3574–3583. [PubMed] [Google Scholar]
  16. Hicks S. J., Drysdale J. W., Munro H. N. Preferential synthesis of ferritin and albumin by different populations of liver polysomes. Science. 1969 May 2;164(3879):584–585. doi: 10.1126/science.164.3879.584. [DOI] [PubMed] [Google Scholar]
  17. Higashi T., Kudo H., Kashiwagi K. Specific precipitation of catalase-synthesizing ribosomes by anti-catalase antiserum. J Biochem. 1972 Mar;71(3):463–470. [PubMed] [Google Scholar]
  18. Kashiwagi K., Tobe T., Higashi T. Studies on rat liver catalase. V. Incorporation of 14 C-leucine into catalase by isolated rat liver ribosomes. J Biochem. 1971 Nov;70(5):785–793. doi: 10.1093/oxfordjournals.jbchem.a129696. [DOI] [PubMed] [Google Scholar]
  19. Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lisowska-Bernstein B., Lamm M. E., Vassalli P. Synthesis of immunoglobulin heavy and light chains by the free ribosomes of a mouse plasma cell tumor. Proc Natl Acad Sci U S A. 1970 Jun;66(2):425–432. doi: 10.1073/pnas.66.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Macdonald R. I., Korner A. Growth hormone stimulation of protein synthetic activity of membrane-bound ribosomes. FEBS Lett. 1971 Feb 12;13(1):62–64. doi: 10.1016/0014-5793(71)80665-8. [DOI] [PubMed] [Google Scholar]
  23. Murthy M. R. Free and membrane-bound ribosomes of rat cerebral cortex. Metabolism of ribosomal and messenger ribonucleic acid. J Biol Chem. 1972 Mar 25;247(6):1944–1950. [PubMed] [Google Scholar]
  24. Murthy M. R. Free and membrane-bound ribosomes of rat cerebral cortex. Protein synthesis in vivo and in vitro. J Biol Chem. 1972 Mar 25;247(6):1936–1943. [PubMed] [Google Scholar]
  25. Nihei T. In vitro amino acid incorporation into myosin by free polysomes of rat skeletal muscle. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1139–1144. doi: 10.1016/0006-291x(71)90581-x. [DOI] [PubMed] [Google Scholar]
  26. Omura T., Kuriyama Y. Role of rough and smooth microsomes in the biosynthesis of microsomal membranes. J Biochem. 1971 Apr;69(4):651–658. doi: 10.1093/oxfordjournals.jbchem.a129514. [DOI] [PubMed] [Google Scholar]
  27. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  28. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  29. Puro D. G., Richter G. W. Ferritin synthesis by free and membrane-bound (poly)ribosomes of rat liver. Proc Soc Exp Biol Med. 1971 Nov;138(2):399–403. doi: 10.3181/00379727-138-35906. [DOI] [PubMed] [Google Scholar]
  30. Ragnotti G. Effect of a modified separation procedure on the size and protein-synthetic activity of membrane-bound liver polyribosomes. Biochem J. 1971 Dec;125(4):1049–1058. doi: 10.1042/bj1251049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ragnotti G., Lawford G. R., Campbell P. N. Biosynthesis of microsomal nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase by membrane-bound and free polysomes from rat liver. Biochem J. 1969 Apr;112(2):139–147. doi: 10.1042/bj1120139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
  33. Sherr C. J., Uhr J. W. Immunoglobulin synthesis on free and bound polyribosomes of rabbit lymph node cells. J Immunol. 1971 Jan;106(1):69–73. [PubMed] [Google Scholar]
  34. Takagi M., Ogata K. Direct evidence for albumin biosynthesis by membrane bound polysomes in rat liver. Biochem Biophys Res Commun. 1968 Oct 10;33(1):55–60. doi: 10.1016/0006-291x(68)90254-4. [DOI] [PubMed] [Google Scholar]
  35. Takagi M., Ogata K. Isolation of serum albumin-synthesizing polysomes from rat liver. Biochem Biophys Res Commun. 1971 Jan 8;42(1):125–131. doi: 10.1016/0006-291x(71)90371-8. [DOI] [PubMed] [Google Scholar]
  36. Tanaka T., Ogata K. Two classes of membrane-bound ribosomes in rat liver cells and their albumin synthesizing activity. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1069–1074. doi: 10.1016/0006-291x(72)90321-x. [DOI] [PubMed] [Google Scholar]
  37. Uenoyama K., Ono T. Synthesis of albumin by the free polyribosomes in 5123 hepatoma. Biochim Biophys Acta. 1972 Sep 29;281(1):124–129. doi: 10.1016/0005-2787(72)90194-3. [DOI] [PubMed] [Google Scholar]
  38. Vassart G., Dumont J. E. Identification of polysomes synthesizing thyroglobulin. Eur J Biochem. 1973 Jan 15;32(2):322–330. doi: 10.1111/j.1432-1033.1973.tb02613.x. [DOI] [PubMed] [Google Scholar]
  39. Vassart G. Specific synthesis of thyroglobulin on membrane bound thyroid ribosomes. FEBS Lett. 1972 Apr 15;22(1):53–56. doi: 10.1016/0014-5793(72)80217-5. [DOI] [PubMed] [Google Scholar]
  40. Venkatesan N., Steele W. J. Free and membrane-bound polysomes of rat liver: separation in nearly quantitative yield and analysis of structure and function. Biochim Biophys Acta. 1972 Dec 22;287(3):526–537. doi: 10.1016/0005-2787(72)90298-5. [DOI] [PubMed] [Google Scholar]
  41. Woodward W. R., Adamson S. D., McQueen H. M., Larson J. W., Estvanik S. M., Wilairat P., Herbert E. Globin synthesis on reticulocyte membrane-bound ribosomes. J Biol Chem. 1973 Mar 10;248(5):1556–1561. [PubMed] [Google Scholar]
  42. Zweig M., Grisham J. W. Free and bound hepatic polyribosomes after partial hepatectomy: pool sizes and sedimentation patterns. Biochim Biophys Acta. 1971 Aug 12;246(1):70–80. doi: 10.1016/0005-2787(71)90073-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES