Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Aug;142(2):247–252. doi: 10.1042/bj1420247

The effect of energization on the apparent Michaelis–Menten constant for oxyge in nmitochondrial respiration

Lars Christian Petersen 1, Peter Nicholls 1, Hans Degn 1
PMCID: PMC1168274  PMID: 4374191

Abstract

Lineweaver–Burk plots of 1/v against 1/[O2] for rat liver mitochondrial respiration with succinate or ascorbate+NNN′N′-tetramethyl-p-phenylenediamine as substrates are non-linear. In state 3u (uncoupled by trifluoromethoxycarbonyl cyanide phenylhydrazone) such plots tend to be concave upward, whereas in state 4 (energized) the plots were concave downward. The apparent Km for oxygen is larger in state 4 than in state 3u, despite the higher turnover in the latter system. It is postulated that at least one reversible reaction occurs between cytochrome c and cytochrome c oxidase, whose rate is increased on energization (reversed electron transfer); a model including such a reaction is proposed which accounts semiquantitatively for the observations.

Full text

PDF
252

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANDER A., KIESE M. Die Wirkung des sauerstoffübertragenden Ferments in Mitochondrien aus Rattenlebern bei niedrigen Sauerstoffdrucken. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1955;224(4):312–321. [PubMed] [Google Scholar]
  2. Chance B., Erecińska M. Flow flash kinetics of the cytochrome a 3 -oxygen reaction in coupled and uncoupled mitochondria using the liquid dye laser. Arch Biochem Biophys. 1971 Apr;143(2):675–687. doi: 10.1016/0003-9861(71)90249-9. [DOI] [PubMed] [Google Scholar]
  3. Chance B. Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol. 1965 Sep;49(1 Suppl):163–195. doi: 10.1085/jgp.49.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Degn H., Wohlrab H. Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions. A new technique. Biochim Biophys Acta. 1971 Sep 7;245(2):347–355. doi: 10.1016/0005-2728(71)90153-8. [DOI] [PubMed] [Google Scholar]
  5. LONGMUIR I. S. Respiration rate of rat-liver cells at low oxygen concentrations. Biochem J. 1957 Feb;65(2):378–382. doi: 10.1042/bj0650378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lundsgaard J., Degn H. Digital regulation of gas flow rates and composition of gas mixtures. IEEE Trans Biomed Eng. 1973 Sep;20(5):384–387. doi: 10.1109/TBME.1973.324237. [DOI] [PubMed] [Google Scholar]
  7. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Slater E. C., Rosing J., Mol A. The phosphorylation potential generated by respiring mitochondria. Biochim Biophys Acta. 1973 Apr 5;292(3):534–553. doi: 10.1016/0005-2728(73)90003-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES