Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 15;16(10):2917–2925. doi: 10.1093/emboj/16.10.2917

DNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site.

N Rajaram 1, T K Kerppola 1
PMCID: PMC1169899  PMID: 9184235

Abstract

Interactions among transcription factors that bind to separate promoter elements depend on distortion of DNA structure and the appropriate orientation of transcription factor binding to allow juxtaposition of complementary structural motifs. We show that Fos and Jun induce distinct DNA bends at different binding sites, and that heterodimers bind to AP-1 sites in a preferred orientation. Sequences on each side of the consensus AP-1 recognition element have independent effects on DNA bending. A single base pair substitution outside the sequences contacted in the X-ray crystal structure alters DNA bending. Substitution of sequences flanking the AP-1 site has converse effects on DNA bending in opposite directions, suggesting that the extent of DNA bending by Fos and Jun is determined in part by the anisotropic bendability of sequences flanking the AP-1 site. DNA bending by Fos and Jun, and the orientation of heterodimer binding are interrelated. Reversal of the orientation of heterodimer binding causes a shift in the direction of DNA bending. The preferred orientation of heterodimer binding is determined both by contacts between a conserved arginine in the basic region of Fos and the central asymmetric guanine as well as the structure of sequences flanking the AP-1 site. Consequently, the structural adaptability of the Fos-Jun-AP1 complex may contribute to its functional versatility at different promoters.

Full Text

The Full Text of this article is available as a PDF (604.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen L., Oakley M. G., Glover J. N., Jain J., Dervan P. B., Hogan P. G., Rao A., Verdine G. L. Only one of the two DNA-bound orientations of AP-1 found in solution cooperates with NFATp. Curr Biol. 1995 Aug 1;5(8):882–889. doi: 10.1016/s0960-9822(95)00178-3. [DOI] [PubMed] [Google Scholar]
  2. Crothers D. M., Drak J. Global features of DNA structure by comparative gel electrophoresis. Methods Enzymol. 1992;212:46–71. doi: 10.1016/0076-6879(92)12005-b. [DOI] [PubMed] [Google Scholar]
  3. DiGabriele A. D., Steitz T. A. A DNA dodecamer containing an adenine tract crystallizes in a unique lattice and exhibits a new bend. J Mol Biol. 1993 Jun 20;231(4):1024–1039. doi: 10.1006/jmbi.1993.1349. [DOI] [PubMed] [Google Scholar]
  4. Dlakic M., Park K., Griffith J. D., Harvey S. C., Harrington R. E. The organic crystallizing agent 2-methyl-2,4-pentanediol reduces DNA curvature by means of structural changes in A-tracts. J Biol Chem. 1996 Jul 26;271(30):17911–17919. doi: 10.1074/jbc.271.30.17911. [DOI] [PubMed] [Google Scholar]
  5. Gartenberg M. R., Ampe C., Steitz T. A., Crothers D. M. Molecular characterization of the GCN4-DNA complex. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6034–6038. doi: 10.1073/pnas.87.16.6034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gartenberg M. R., Crothers D. M. DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature. 1988 Jun 30;333(6176):824–829. doi: 10.1038/333824a0. [DOI] [PubMed] [Google Scholar]
  7. Glover J. N., Harrison S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature. 1995 Jan 19;373(6511):257–261. doi: 10.1038/373257a0. [DOI] [PubMed] [Google Scholar]
  8. Goodsell D. S., Kaczor-Grzeskowiak M., Dickerson R. E. The crystal structure of C-C-A-T-T-A-A-T-G-G. Implications for bending of B-DNA at T-A steps. J Mol Biol. 1994 May 27;239(1):79–96. doi: 10.1006/jmbi.1994.1352. [DOI] [PubMed] [Google Scholar]
  9. Haran T. E., Kahn J. D., Crothers D. M. Sequence elements responsible for DNA curvature. J Mol Biol. 1994 Nov 25;244(2):135–143. doi: 10.1006/jmbi.1994.1713. [DOI] [PubMed] [Google Scholar]
  10. Kerppola T. K., Curran T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene. 1994 Nov;9(11):3149–3158. [PubMed] [Google Scholar]
  11. Kerppola T. K., Curran T. DNA bending by Fos and Jun: the flexible hinge model. Science. 1991 Nov 22;254(5035):1210–1214. doi: 10.1126/science.1957173. [DOI] [PubMed] [Google Scholar]
  12. Kerppola T. K., Curran T. Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations: implications for transcription factor cooperativity. Cell. 1991 Jul 26;66(2):317–326. doi: 10.1016/0092-8674(91)90621-5. [DOI] [PubMed] [Google Scholar]
  13. Kerppola T. K. Fos and Jun bend the AP-1 site: effects of probe geometry on the detection of protein-induced DNA bending. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10117–10122. doi: 10.1073/pnas.93.19.10117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leonard D. A., Rajaram N., Kerppola T. K. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4913–4918. doi: 10.1073/pnas.94.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakabeppu Y., Nathans D. The basic region of Fos mediates specific DNA binding. EMBO J. 1989 Dec 1;8(12):3833–3841. doi: 10.1002/j.1460-2075.1989.tb08561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paolella D. N., Palmer C. R., Schepartz A. DNA targets for certain bZIP proteins distinguished by an intrinsic bend. Science. 1994 May 20;264(5162):1130–1133. doi: 10.1126/science.8178171. [DOI] [PubMed] [Google Scholar]
  17. Rajaram N., Kerppola T. K. DNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site. EMBO J. 1997 May 15;16(10):2917–2925. doi: 10.1093/emboj/16.10.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robertson L. M., Kerppola T. K., Vendrell M., Luk D., Smeyne R. J., Bocchiaro C., Morgan J. I., Curran T. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron. 1995 Feb;14(2):241–252. doi: 10.1016/0896-6273(95)90282-1. [DOI] [PubMed] [Google Scholar]
  19. Ryseck R. P., Bravo R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene. 1991 Apr;6(4):533–542. [PubMed] [Google Scholar]
  20. Satchwell S. C., Drew H. R., Travers A. A. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  21. Sitlani A., Crothers D. M. Fos and Jun do not bend the AP-1 recognition site. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3248–3252. doi: 10.1073/pnas.93.8.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Starr D. B., Matsui W., Thomas J. R., Yamamoto K. R. Intracellular receptors use a common mechanism to interpret signaling information at response elements. Genes Dev. 1996 May 15;10(10):1271–1283. doi: 10.1101/gad.10.10.1271. [DOI] [PubMed] [Google Scholar]
  23. Thanos D., Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995 Dec 29;83(7):1091–1100. doi: 10.1016/0092-8674(95)90136-1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES