Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 1;16(13):3935–3943. doi: 10.1093/emboj/16.13.3935

ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation.

A A Postigo 1, D C Dean 1
PMCID: PMC1170017  PMID: 9233803

Abstract

A number of genes, spanning the evolutionary scale from yeast to mammals, that are involved in spatial and temporal patterning during development contain zinc finger and homeodomain motifs. One such zinc finger/homeodomain protein is Drosophila Zfh-1, a member of the zfh family of Drosophila genes, which is expressed in muscle precursors and is critical for the proper development of muscle. Here we demonstrate that a vertebrate homolog of Zfh-1 (ZEB) is a negative regulator of muscle differentiation. We show that ZEB binds to a subset of E boxes in muscle genes and functions by actively repressing transcription. One target of this repression is the members of the MEF-2 family, which synergize with proteins of the myogenic basic helix-loop-helix family (bHLH) (myoD, myf-5, myogenin and MRF-4) to induce myogenic differentiation. As muscle differentiation proceeds, myogenic bHLH proteins accumulate to levels sufficient to displace ZEB from the E boxes, releasing the repression and allowing bHLH proteins to further activate transcription. This mechanism of active transcriptional repression distinguishes ZEB from other negative regulators of myogenesis (Id, Twist and I-mfa) that inhibit muscle differentiation by simply binding and inactivating myogenic factors. The relative affinity of ZEB versus myogenic bHLH proteins varies for E boxes in different genes such that ZEB would be displaced from different genes at distinct times as myogenic bHLH proteins accumulate during myogenesis, thus providing a mechanism to regulate temporal order of gene expression.

Full Text

The Full Text of this article is available as a PDF (520.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amacher S. L., Buskin J. N., Hauschka S. D. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol. 1993 May;13(5):2753–2764. doi: 10.1128/mcb.13.5.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arroyo A. G., Yang J. T., Rayburn H., Hynes R. O. Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell. 1996 Jun 28;85(7):997–1008. doi: 10.1016/s0092-8674(00)81301-x. [DOI] [PubMed] [Google Scholar]
  3. Benezra R., Davis R. L., Lockshon D., Turner D. L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. doi: 10.1016/0092-8674(90)90214-y. [DOI] [PubMed] [Google Scholar]
  4. Black B. L., Martin J. F., Olson E. N. The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J Biol Chem. 1995 Feb 17;270(7):2889–2892. doi: 10.1074/jbc.270.7.2889. [DOI] [PubMed] [Google Scholar]
  5. Chen C. M., Kraut N., Groudine M., Weintraub H. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell. 1996 Sep 6;86(5):731–741. doi: 10.1016/s0092-8674(00)80148-8. [DOI] [PubMed] [Google Scholar]
  6. Chow K. N., Dean D. C. Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol Cell Biol. 1996 Sep;16(9):4862–4868. doi: 10.1128/mcb.16.9.4862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Desbarats L., Gaubatz S., Eilers M. Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc. Genes Dev. 1996 Feb 15;10(4):447–460. doi: 10.1101/gad.10.4.447. [DOI] [PubMed] [Google Scholar]
  8. Duncan D. D., Adlam M., Siu G. Asymmetric redundancy in CD4 silencer function. Immunity. 1996 Mar;4(3):301–311. doi: 10.1016/s1074-7613(00)80438-0. [DOI] [PubMed] [Google Scholar]
  9. Edmondson D. G., Cheng T. C., Cserjesi P., Chakraborty T., Olson E. N. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol Cell Biol. 1992 Sep;12(9):3665–3677. doi: 10.1128/mcb.12.9.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fortini M. E., Lai Z. C., Rubin G. M. The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech Dev. 1991 Jun;34(2-3):113–122. doi: 10.1016/0925-4773(91)90048-b. [DOI] [PubMed] [Google Scholar]
  11. Funahashi J., Sekido R., Murai K., Kamachi Y., Kondoh H. Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development. 1993 Oct;119(2):433–446. doi: 10.1242/dev.119.2.433. [DOI] [PubMed] [Google Scholar]
  12. Genetta T., Ruezinsky D., Kadesch T. Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol. 1994 Sep;14(9):6153–6163. doi: 10.1128/mcb.14.9.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray S., Levine M. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 1996 Mar 15;10(6):700–710. doi: 10.1101/gad.10.6.700. [DOI] [PubMed] [Google Scholar]
  14. Gray S., Levine M. Transcriptional repression in development. Curr Opin Cell Biol. 1996 Jun;8(3):358–364. doi: 10.1016/s0955-0674(96)80010-x. [DOI] [PubMed] [Google Scholar]
  15. Ip Y. T., Park R. E., Kosman D., Bier E., Levine M. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 1992 Sep;6(9):1728–1739. doi: 10.1101/gad.6.9.1728. [DOI] [PubMed] [Google Scholar]
  16. Keller A. D., Maniatis T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol Cell Biol. 1992 May;12(5):1940–1949. doi: 10.1128/mcb.12.5.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kostich W. A., Sanes J. R. Expression of zfh-4, a new member of the zinc finger-homeodomain family, in developing brain and muscle. Dev Dyn. 1995 Feb;202(2):145–152. doi: 10.1002/aja.1002020206. [DOI] [PubMed] [Google Scholar]
  18. Lai Z. C., Rushton E., Bate M., Rubin G. M. Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4122–4126. doi: 10.1073/pnas.90.9.4122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lilly B., Zhao B., Ranganayakulu G., Paterson B. M., Schulz R. A., Olson E. N. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science. 1995 Feb 3;267(5198):688–693. doi: 10.1126/science.7839146. [DOI] [PubMed] [Google Scholar]
  20. Lobb R. R., Hemler M. E. The pathophysiologic role of alpha 4 integrins in vivo. J Clin Invest. 1994 Nov;94(5):1722–1728. doi: 10.1172/JCI117519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lundell M. J., Hirsh J. The zfh-2 gene product is a potential regulator of neuron-specific dopa decarboxylase gene expression in Drosophila. Dev Biol. 1992 Nov;154(1):84–94. doi: 10.1016/0012-1606(92)90050-q. [DOI] [PubMed] [Google Scholar]
  22. Molkentin J. D., Black B. L., Martin J. F., Olson E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995 Dec 29;83(7):1125–1136. doi: 10.1016/0092-8674(95)90139-6. [DOI] [PubMed] [Google Scholar]
  23. Molkentin J. D., Olson E. N. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9366–9373. doi: 10.1073/pnas.93.18.9366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neuhold L. A., Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell. 1993 Sep 24;74(6):1033–1042. doi: 10.1016/0092-8674(93)90725-6. [DOI] [PubMed] [Google Scholar]
  25. Olson E. N., Perry M., Schulz R. A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol. 1995 Nov;172(1):2–14. doi: 10.1006/dbio.1995.0002. [DOI] [PubMed] [Google Scholar]
  26. Osborn L., Kunkel S., Nabel G. J. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2336–2340. doi: 10.1073/pnas.86.7.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Postigo A. A., Sheppard A. M., Mucenski M. L., Dean D. C. c-Myb and Ets proteins synergize to overcome transcriptional repression by ZEB. EMBO J. 1997 Jul 1;16(13):3924–3934. doi: 10.1093/emboj/16.13.3924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosen G. D., Barks J. L., Iademarco M. F., Fisher R. J., Dean D. C. An intricate arrangement of binding sites for the Ets family of transcription factors regulates activity of the alpha 4 integrin gene promoter. J Biol Chem. 1994 Jun 3;269(22):15652–15660. [PubMed] [Google Scholar]
  29. Rosen G. D., Sanes J. R., LaChance R., Cunningham J. M., Roman J., Dean D. C. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell. 1992 Jun 26;69(7):1107–1119. doi: 10.1016/0092-8674(92)90633-n. [DOI] [PubMed] [Google Scholar]
  30. Sawadogo M., Roeder R. G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell. 1985 Nov;43(1):165–175. doi: 10.1016/0092-8674(85)90021-2. [DOI] [PubMed] [Google Scholar]
  31. Schoenherr C. J., Anderson D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995 Mar 3;267(5202):1360–1363. doi: 10.1126/science.7871435. [DOI] [PubMed] [Google Scholar]
  32. Sekido R., Murai K., Funahashi J., Kamachi Y., Fujisawa-Sehara A., Nabeshima Y., Kondoh H. The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Biol. 1994 Sep;14(9):5692–5700. doi: 10.1128/mcb.14.9.5692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simon A. M., Burden S. J. An E box mediates activation and repression of the acetylcholine receptor delta-subunit gene during myogenesis. Mol Cell Biol. 1993 Sep;13(9):5133–5140. doi: 10.1128/mcb.13.9.5133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spicer D. B., Rhee J., Cheung W. L., Lassar A. B. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science. 1996 Jun 7;272(5267):1476–1480. doi: 10.1126/science.272.5267.1476. [DOI] [PubMed] [Google Scholar]
  35. Stanojevic D., Small S., Levine M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science. 1991 Nov 29;254(5036):1385–1387. doi: 10.1126/science.1683715. [DOI] [PubMed] [Google Scholar]
  36. Tapscott S. J., Lassar A. B., Weintraub H. A novel myoblast enhancer element mediates MyoD transcription. Mol Cell Biol. 1992 Nov;12(11):4994–5003. doi: 10.1128/mcb.12.11.4994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thayer M. J., Weintraub H. Activation and repression of myogenesis in somatic cell hybrids: evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell. 1990 Oct 5;63(1):23–32. doi: 10.1016/0092-8674(90)90285-m. [DOI] [PubMed] [Google Scholar]
  38. Weintraub H., Genetta T., Kadesch T. Tissue-specific gene activation by MyoD: determination of specificity by cis-acting repression elements. Genes Dev. 1994 Sep 15;8(18):2203–2211. doi: 10.1101/gad.8.18.2203. [DOI] [PubMed] [Google Scholar]
  39. Weintraub S. J., Chow K. N., Luo R. X., Zhang S. H., He S., Dean D. C. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature. 1995 Jun 29;375(6534):812–815. doi: 10.1038/375812a0. [DOI] [PubMed] [Google Scholar]
  40. Weintraub S. J., Prater C. A., Dean D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature. 1992 Jul 16;358(6383):259–261. doi: 10.1038/358259a0. [DOI] [PubMed] [Google Scholar]
  41. Yasuda H., Mizuno A., Tamaoki T., Morinaga T. ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol. 1994 Feb;14(2):1395–1401. doi: 10.1128/mcb.14.2.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES