Abstract
The mitochondrial DNA (mtDNA) of a primitive kinetoplastid flagellate Cryptobia helicis is composed of 4.2 kb minicircles and 43 kb maxicircles. 85% and 6% of the minicircles are in the form of supercoiled (SC) and relaxed (OC) monomers, respectively. The remaining minicircles (9%) constitute catenated oligomers composed of both the SC and OC molecules. Minicircles contain bent helix and sequences homologous to the minicircle conserved sequence blocks. Maxicircles encode typical mitochondrial genes and are not catenated. The mtDNA, which we describe with the term 'pankinetoplast DNA', is spread throughout the mitochondrial lumen, where it is associated with multiple electron-lucent loci. There are approximately 8400 minicircles per pankinetoplast-mitochondrion, with the pan-kDNA representing approximately 36% of the total cellular DNA. Based on the similarity of the C.helicis minicircles to plasmids, we present a theory on the formation of the kDNA network.
Full Text
The Full Text of this article is available as a PDF (672.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arts G. J., Benne R. Mechanism and evolution of RNA editing in kinetoplastida. Biochim Biophys Acta. 1996 Jun 3;1307(1):39–54. doi: 10.1016/0167-4781(96)00021-8. [DOI] [PubMed] [Google Scholar]
- Borst P. Why kinetoplast DNA networks? Trends Genet. 1991 May;7(5):139–141. doi: 10.1016/0168-9525(91)90374-y. [DOI] [PubMed] [Google Scholar]
- Burger G., Plante I., Lonergan K. M., Gray M. W. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol. 1995 Feb 3;245(5):522–537. doi: 10.1006/jmbi.1994.0043. [DOI] [PubMed] [Google Scholar]
- Castro C., Hernández R., Castañeda M. Trypanosoma cruzi ribosomal RNA: internal break in the large-molecular-mass species and number of genes. Mol Biochem Parasitol. 1981 Feb;2(3-4):219–233. doi: 10.1016/0166-6851(81)90102-x. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. Trends Genet. 1997 Jan;13(1):6–9. doi: 10.1016/s0168-9525(96)30116-9. [DOI] [PubMed] [Google Scholar]
- Chen J., Englund P. T., Cozzarelli N. R. Changes in network topology during the replication of kinetoplast DNA. EMBO J. 1995 Dec 15;14(24):6339–6347. doi: 10.1002/j.1460-2075.1995.tb00325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Rauch C. A., White J. H., Englund P. T., Cozzarelli N. R. The topology of the kinetoplast DNA network. Cell. 1995 Jan 13;80(1):61–69. doi: 10.1016/0092-8674(95)90451-4. [DOI] [PubMed] [Google Scholar]
- Englund P. T. Free minicircles of kinetoplast DNA in Crithidia fasciculata. J Biol Chem. 1979 Jun 10;254(11):4895–4900. [PubMed] [Google Scholar]
- Ferguson M., Torri A. F., Ward D. C., Englund P. T. In situ hybridization to the Crithidia fasciculata kinetoplast reveals two antipodal sites involved in kinetoplast DNA replication. Cell. 1992 Aug 21;70(4):621–629. doi: 10.1016/0092-8674(92)90431-b. [DOI] [PubMed] [Google Scholar]
- Fernandes A. P., Nelson K., Beverley S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths A. J., Yang X. Recombination between heterologous linear and circular mitochondrial plasmids in the fungus Neurospora. Mol Gen Genet. 1995 Nov 1;249(1):25–36. doi: 10.1007/BF00290232. [DOI] [PubMed] [Google Scholar]
- Hajduk S. L., Siqueira A. M., Vickerman K. Kinetoplast DNA of Bodo caudatus: a noncatenated structure. Mol Cell Biol. 1986 Dec;6(12):4372–4378. doi: 10.1128/mcb.6.12.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jirků M., Kolesnikov A. A., Benada O., Lukes J. Marine fish and ray trypanosomes have large kinetoplast minicircle DNA. Mol Biochem Parasitol. 1995 Jul;73(1-2):279–283. doi: 10.1016/0166-6851(95)00121-g. [DOI] [PubMed] [Google Scholar]
- Kitchin P. A., Klein V. A., Ryan K. A., Gann K. L., Rauch C. A., Kang D. S., Wells R. D., Englund P. T. A highly bent fragment of Crithidia fasciculata kinetoplast DNA. J Biol Chem. 1986 Aug 25;261(24):11302–11309. [PubMed] [Google Scholar]
- Kleisen C. M., Borst P., Weijers P. J. The structure of kinetoplast DNA. I. Properties of the intact multi-circular complex from Crithidia luciliae. Biochim Biophys Acta. 1975 May 1;390(2):155–167. [PubMed] [Google Scholar]
- Leon W., Fouts D. L., Manning J. Sequence arrangement of the 16S and 26S rRNA genes in the pathogenic haemoflagellate Leishmania donovani. Nucleic Acids Res. 1978 Feb;5(2):491–504. doi: 10.1093/nar/5.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukes J., Arts G. J., van den Burg J., de Haan A., Opperdoes F., Sloof P., Benne R. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994 Nov 1;13(21):5086–5098. doi: 10.1002/j.1460-2075.1994.tb06838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukes J., Jirkû M., Dolezel D., Kral'ová I., Hollar L., Maslov D. A. Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol. 1997 May;44(5):521–527. doi: 10.1007/pl00006176. [DOI] [PubMed] [Google Scholar]
- Maslov D. A., Avila H. A., Lake J. A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994 Mar 24;368(6469):345–348. doi: 10.1038/368345a0. [DOI] [PubMed] [Google Scholar]
- Maslov D. A., Lukes J., Jirku M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996 Jan;75(2):197–205. doi: 10.1016/0166-6851(95)02526-x. [DOI] [PubMed] [Google Scholar]
- Maslov D. A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994 Dec;14(12):8174–8182. doi: 10.1128/mcb.14.12.8174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D. Organelle genomes: going, going, gone! Science. 1997 Feb 7;275(5301):790–791. doi: 10.1126/science.275.5301.790. [DOI] [PubMed] [Google Scholar]
- Pearce S. R., Harrison G., Li D., Heslop-Harrison J., Kumar A., Flavell A. J. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet. 1996 Feb 25;250(3):305–315. doi: 10.1007/BF02174388. [DOI] [PubMed] [Google Scholar]
- Pollard V. W., Rohrer S. P., Michelotti E. F., Hancock K., Hajduk S. L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990 Nov 16;63(4):783–790. doi: 10.1016/0092-8674(90)90144-4. [DOI] [PubMed] [Google Scholar]
- Rauch C. A., Perez-Morga D., Cozzarelli N. R., Englund P. T. The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 1993 Feb;12(2):403–411. doi: 10.1002/j.1460-2075.1993.tb05672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray D. S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989 Mar;9(3):1365–1367. doi: 10.1128/mcb.9.3.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D. R., Gull K. The configuration of DNA replication sites within the Trypanosoma brucei kinetoplast. J Cell Biol. 1994 Aug;126(3):641–648. doi: 10.1083/jcb.126.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rovai L., Tripp C., Stuart K., Simpson L. Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning. Mol Biochem Parasitol. 1992 Jan;50(1):115–125. doi: 10.1016/0166-6851(92)90249-j. [DOI] [PubMed] [Google Scholar]
- Ryan K. A., Englund P. T. Synthesis and processing of kinetoplast DNA minicircles in Trypanosoma equiperdum. Mol Cell Biol. 1989 Aug;9(8):3212–3217. doi: 10.1128/mcb.9.8.3212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro T. A., Englund P. T. The structure and replication of kinetoplast DNA. Annu Rev Microbiol. 1995;49:117–143. doi: 10.1146/annurev.mi.49.100195.001001. [DOI] [PubMed] [Google Scholar]
- Shapiro T. A. Mitochondrial topoisomerase II activity is essential for kinetoplast DNA minicircle segregation. Mol Cell Biol. 1994 Jun;14(6):3660–3667. doi: 10.1128/mcb.14.6.3660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997 Jun;86(2):133–141. doi: 10.1016/s0166-6851(97)00037-6. [DOI] [PubMed] [Google Scholar]
- Simpson L., Thiemann O. H. Sense from nonsense: RNA editing in mitochondria of kinetoplastid protozoa and slime molds. Cell. 1995 Jun 16;81(6):837–840. doi: 10.1016/0092-8674(95)90003-9. [DOI] [PubMed] [Google Scholar]
- Sturm N. R., Simpson L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell. 1990 Jun 1;61(5):879–884. doi: 10.1016/0092-8674(90)90198-n. [DOI] [PubMed] [Google Scholar]
- Wiemer E. A., Hannaert V., van den IJssel P. R., Van Roy J., Opperdoes F. R., Michels P. A. Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: an evolutionary scenario of subcellular compartmentation in kinetoplastida. J Mol Evol. 1995 Apr;40(4):443–454. doi: 10.1007/BF00164030. [DOI] [PubMed] [Google Scholar]
- Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996 Nov;2(11):1153–1160. [PMC free article] [PubMed] [Google Scholar]