Skip to main content
Chinese Journal of Burns and Wounds logoLink to Chinese Journal of Burns and Wounds
. 2024 Dec 20;40(12):1132–1142. [Article in Chinese] doi: 10.3760/cma.j.cn501225-20240927-00355

人脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制

Effects and underlying mechanism of human adipose mesenchymal stem cells-derived exosomes on acute lung injury in septic mice

白 晓智 1, 陶 克 2,*, 刘 洋 1, 郝 彤 1, 张 浩 1, 官 浩 1,*
PMCID: PMC11704362

Abstract

目的

探讨人脂肪间充质干细胞(ADSC)外泌体对脓毒症小鼠急性肺损伤的影响及其机制。

方法

该研究为实验研究。选取第4~5代人ADSC, 采用差速超高速离心法分离并提取其上清液中的外泌体, 对外泌体进行鉴定后使用。取24只成年雄性BALB/c小鼠, 按照随机数字表法(分组方法下同)分成正常对照组、单纯盲肠结扎穿孔(CLP)组和CLP+ADSC外泌体组, 对单纯CLP组小鼠行CLP(构建脓毒症小鼠急性肺损伤动物模型)后注射磷酸盐缓冲液, 对CLP+ADSC外泌体组小鼠进行组名相应的处理, 对正常对照组小鼠仅注射磷酸盐缓冲液, 每组8只。术后24 h, 采用苏木精-伊红染色观测小鼠肺组织形态, 采用原位末端标记法检测肺组织细胞凋亡情况, 采用酶联免疫吸附测定法检测小鼠血清中肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β)含量, 使用酶标仪检测肺组织中丙二醛和超氧化物歧化酶(SOD)的含量, 采用免疫荧光法检测小鼠肺组织细胞中CD86、CD206的表达。取小鼠巨噬细胞RAW264.7, 分为空白对照组、单纯内毒素/脂多糖(LPS)组和LPS+ADSC外泌体组, 在LPS+ADSC外泌体组和单纯LPS组细胞中分别加入LPS+ADSC外泌体、LPS进行培养, 对空白对照组细胞进行常规培养。培养12 h后, 采用相关试剂盒检测细胞中ATP含量、线粒体活性氧的阳性细胞百分比、线粒体膜电位情况, 采用实时荧光定量反转录PCR法检测细胞中M1型极化标志因子诱导型一氧化氮合酶(iNOS)、M2型极化标志因子精氨酸酶-1(Arg1)以及炎症因子TNF-α和IL-1β的mRNA表达量。以上实验除mRNA表达量的检测样本数为3以外, 其余各指标的检测样本数均为4。

结果

术后24 h, 正常对照组小鼠肺组织结构清晰完整, 无炎症细胞浸润;单纯CLP组较正常对照组小鼠的肺组织水肿明显, 炎症细胞浸润现象明显, 凋亡、坏死细胞明显增多;CLP+ADSC外泌体组较单纯CLP组小鼠肺组织水肿症状明显减轻, 炎症细胞浸润明显减少, 细胞凋亡、坏死情况明显改善。术后24 h, 与正常对照组比较, 单纯CLP组小鼠血清中TNF-α和IL-1β含量均明显增加(t值分别为50.82、30.81, P < 0.05);与单纯CLP组比较, CLP+ADSC外泌体组小鼠血清中的TNF-α和IL-1β含量均明显降低(t值分别为16.36、19.25, P < 0.05)。术后24 h, 与正常对照组比较, 单纯CLP组小鼠肺组织中丙二醛含量明显升高(t=9.89, P < 0.05), SOD含量明显降低(t=5.01, P < 0.05);与单纯CLP组比较, CLP+ADSC外泌体组小鼠肺组织中丙二醛含量明显降低(t=4.38, P < 0.05), SOD含量明显升高(t=2.97, P < 0.05)。术后24 h, 与正常对照组相比, 单纯CLP组小鼠的肺组织中CD86阳性细胞占比明显升高, CD206阳性细胞占比明显减少;与单纯CLP组相比, CLP+ADSC外泌体组小鼠肺组织中CD86阳性细胞占比明显减少, CD206阳性细胞占比明显升高。培养12 h后, 与空白对照组比较, 单纯LPS组RAW264.7细胞中ATP含量明显降低(t=6.28, P < 0.05);与单纯LPS组比较, LPS+ADSC外泌体组RAW264.7细胞中ATP含量明显升高(t=4.01, P < 0.05)。培养12 h后, 与空白对照组的(22±4)%比较, 单纯LPS组RAW264.7细胞中线粒体活性氧的阳性细胞百分比(40±6)%明显增加(t=5.04, P < 0.05);与单纯LPS组比较, LPS+ADSC外泌体组RAW264.7细胞中线粒体活性氧的阳性细胞百分比(30±5)%明显降低(t=2.65, P < 0.05)。培养12 h后, 与空白对照组相比, 单纯LPS组RAW264.7细胞的线粒体膜电位明显降低;LPS+ADSC外泌体组RAW264.7细胞的线粒体膜电位介于空白对照组和单纯LPS组之间。培养12 h后, 与空白对照组相比, 单纯LPS组RAW264.7细胞中TNF-α、IL-1β和iNOS的mRNA表达量均明显增加(t值分别为16.51、31.04、7.70, P < 0.05), Arg1的mRNA表达量降低但差异无统计学意义(P > 0.05);与单纯LPS组比较, LPS+ADSC外泌体组RAW264.7细胞中TNF-α、IL-1β和iNOS的mRNA表达量均明显降低(t值分别为11.38、22.58、5.28, P < 0.05), Arg1的mRNA表达量明显升高(t=7.66, P < 0.05)。

结论

人ADSC外泌体可能通过改善LPS诱导的小鼠巨噬细胞线粒体功能障碍, 抑制巨噬细胞向M1型极化, 减轻炎症反应, 从而发挥改善脓毒症小鼠肺损伤的作用。

Keywords: 脓毒症, 急性肺损伤, 间质干细胞, 外泌体, 巨噬细胞, 线粒体功能障碍


急性肺损伤(acute lung injury, ALI)或其严重形式的ARDS在大面积烧伤、危重多发伤、脓毒症等危重患者中较为常见, 其特征是存在持续的肺部炎症和弥漫性肺泡损伤[1-4]。巨噬细胞广泛分布于肺组织。在ALI早期阶段, 巨噬细胞响应外源性微生物刺激, 被迅速激活, 随后通过产生多种细胞因子和向肺部招募更多的其他巨噬细胞及中性粒细胞等炎症细胞的形式促进炎症的持续发展, 最终导致肺损伤[5-8]。研究显示, 线粒体功能障碍在巨噬细胞持续向M1型极化的过程中处于关键地位。在ALI、ARDS等多种疾病的发生发展中, 线粒体功能障碍参与了过度炎症反应和活性氧过度产生[9-12]。因此, 在炎症早期围绕通过调控巨噬细胞线粒体功能障碍来控制巨噬细胞持续向M1型极化、过度炎症反应的研究, 可能成为治疗ALI及ARDS的一种有效策略。

脂肪间充质干细胞(adipose mesenchymal stem cell, ADSC)是干细胞家族的重要成员, 具有强大的免疫调节和抗炎能力, 且易于获得[13-15]。近年来, 大量研究表明, 间充质干细胞分泌的可溶性因子和外泌体可以替代细胞作为抑制炎症和促进组织修复的选择[16-19]。本研究通过对小鼠进行盲肠结扎穿孔(cecal ligation and puncture, CLP)来诱发ALI从而构建脓毒症动物模型, 并采用人ADSC外泌体进行干预, 旨在探究人ADSC外泌体对脓毒症小鼠ALI的潜在作用及分子机制。

1. 材料与方法

本实验研究遵循空军军医大学动物实验伦理委员会和国家有关实验动物管理和使用的规定。

1.1. 动物和细胞及主要试剂与仪器来源

24只健康无特殊病原体级成年雄性BALB/c小鼠(体重21~26 g)由空军军医大学动物中心提供, 许可证号:SYXK(军)2012-0022。人ADSC为本实验室冻存细胞, RAW264.7小鼠单核巨噬细胞白血病细胞系购自美国典型培养物保藏中心。

DMEM/F12、RPMI-1640培养基、无外泌体胎牛血清购自美国Gibco公司, ADSC专用培养基购自广州赛业生物科技有限公司, 总mRNA提取试剂盒、ATP含量检测试剂盒、辣根过氧化物酶标记的山羊抗兔IgG多克隆抗体、线粒体超氧化物(mitochondrial superoxide, MitoSOX)检测试剂盒、线粒体膜电位检测试剂盒(荧光基团为JC-1)购自上海碧云天生物技术有限公司, 反转录试剂盒及PCR检测试剂盒购自日本Takara公司, 40 g/L多聚甲醛、HE染色试剂盒购自武汉赛维尔生物科技有限公司, 丙二醛(脂质过氧化产物)和SOD(自由基代谢产物)检测试剂盒购自南京建成生物科技有限公司, 一步法原位末端标记(TdT-mediated-dUTP nick-end labeling, TUNEL)细胞凋亡检测试剂盒(荧光基团为异硫氰酸荧光素)购自武汉伊莱瑞特生物科技股份有限公司, 多聚-D-赖氨酸、4′, 6-二脒基-2-苯基吲哚(4', 6-diamidino-2-phenylindole, DAPI)、外泌体示踪染料PKH26红色荧光细胞连接试剂盒购自美国Sigma公司, 兔抗小鼠CD86(M1型巨噬细胞标志物)单克隆抗体、兔抗小鼠CD206(M2型巨噬细胞标志物)单克隆抗体和异硫氰酸荧光素标记的兔抗人CD9单克隆抗体、兔抗人CD63单克隆抗体、兔抗人CD81单克隆抗体购自美国Cell Signaling Technology公司, 小鼠TNF-α、IL-1β的ELISA试剂盒购自美国Becton Dickinson公司。

FACS AriaⅢ型流式细胞仪购自美国Becton Dickinson公司, 二氧化碳培养箱购自美国Thermo Fisher Scientific公司, Optima™XPN型超高速离心机购自美国Beckman公司, Infinite M200 Pro型全波长多功能酶标仪购自瑞士TECAN公司, HT-7700型透射电子显微镜购自日本Hitachi公司, EVOS FL Auto 2型激光扫描共聚焦显微镜购自美国Invitrogen公司, FSX100型全自动生物图像导航仪购自日本Olympus公司, IQ5TM型实时荧光定量PCR仪购自美国Bio-Rad公司。

1.2. 人ADSC外泌体的分离提取及表征

取人ADSC, 采用ADSC专用培养基进行常规培养, 选用第4或第5代细胞进行后续实验。参照文献[20]采用差速超高速离心法制备人ADSC外泌体, 调整其质量浓度为2 μg/mL备用。采用透射电子显微镜在40 000倍放大倍数下观察外泌体形态, 采用纳米颗粒跟踪分析仪检测外泌体粒径。常规采用流式细胞仪检测外泌体CD9、CD63、CD81阳性率, 其中抗体为异硫氰酸荧光素标记的兔抗人CD9、CD63、CD81单克隆抗体(稀释比均为1∶200)。

1.3. 动物实验

1.3.1. 脓毒症小鼠模型的建立及分组与样本收集

取24只BALB/c小鼠, 适应性饲养1周后按照随机数字表法(分组方法下同)分成正常对照组、单纯CLP组和CLP+ADSC外泌体组, 每组8只。单纯CLP组和CLP+ADSC外泌体组小鼠均行CLP手术建立脓毒症模型[21-22]。CLP术后2 h, 对CLP+ADSC外泌体组小鼠行尾静脉注射100 μL由1.2制备的外泌体, 单纯CLP组小鼠尾静脉注射等量无菌PBS。同时, 正常对照组小鼠仅尾静脉注射等量无菌PBS。术后24 h(正常对照组小鼠取注射PBS后相同时间点), 参照文献[23-25], 摘除小鼠眼球, 取血备用;然后用颈椎脱臼法处死小鼠, 将左肺置于冰上备用, 将右肺采用40 g/L多聚甲醛固定, 常规石蜡包埋, 制成厚度为5 μm切片备用。

1.3.2. 肺组织的形态学观察及细胞凋亡情况检测

1.3.1中切片, 常规行HE染色并采用全自动生物图像导航仪于激光扫描共聚焦显微镜100倍镜下观察肺组织形态。另取切片, 按TUNEL细胞凋亡检测试剂盒说明书进行染色(阳性染色为绿色), 并用DAPI复染细胞核(阳性染色为蓝色), 然后于激光扫描共聚焦显微镜100倍放大倍数下观察肺组织细胞凋亡情况。

1.3.3. 血清中炎症因子水平的检测

1.3.1中的血标本, 冰上静置30 min后于4 ℃条件下以1 600×g离心15 min, 小心吸取上层血清, 按照ELISA试剂盒说明书步骤检测血清中的TNF-α和IL-1β含量。样本数为4。

1.3.4. 肺组织的氧化应激水平检测

1.3.1中小鼠肺组织, 剪碎并裂解肺组织收集肺组织匀浆液。参照丙二醛和SOD检测试剂盒说明书, 采用酶标仪分别于534 nm波长和452 nm波长处测定匀浆液的吸光度值, 反映丙二醛和SOD含量。样本数为4。

1.3.5. 肺组织中巨噬细胞表型的检测

1.3.1中切片, 进行抗原修复后常规进行免疫组织化学染色, 一抗为兔抗小鼠CD86、CD206单克隆抗体(稀释比均为1∶100), 二抗为辣根过氧化物酶标记的山羊抗兔IgG多克隆抗体(稀释比为1∶200), 用苏木素染细胞核。在激光扫描共聚焦显微镜100倍放大倍数下观察阳性细胞占比情况。目标蛋白阳性染色为棕色, 细胞核阳性染色为蓝色。样本数为4。

1.4. 细胞实验

1.4.1. RAW264.7细胞对外泌体的内化情况

取100 μL由1.2制备的外泌体, 加入4 μL的PKH26标记的细胞连接试剂, 室温避光孵育5 min后, 4 ℃、100 000×g离心1 h, 获取沉淀, 然后采用100 μL PBS重新悬浮备用。

调整RAW264.7细胞浓度为5×104个/mL, 按照每孔100 μL接种于96孔板, 培养至细胞融合达70%。取前述20 μL PKH26标记的人ADSC外泌体悬液, 加到RAW264.7细胞培养液中, 避光共培养12 h后用PBS清洗3次。用40 g/L多聚甲醛固定15 min, 用DAPI染细胞核。在激光扫描共聚焦显微镜200倍放大倍数下观察细胞对PKH26标记的人ADSC外泌体的吞噬情况。外泌体阳性染色为红色, 细胞核阳性染色为蓝色。

1.4.2. LPS诱导的RAW264.7细胞炎症模型及分组处理

取RAW264.7细胞, 采用含体积分数10%无外泌体胎牛血清的RPMI-1640培养基常规进行细胞培养, 待细胞生长至80%融合时, 将细胞分为空白对照组、单纯LPS组和LPS+ADSC外泌体组。在LPS+ADSC外泌体组细胞培养基中先加入终质量浓度50 μg/mL人ADSC外泌体预孵育1 h, 然后参照文献[26]进行LPS刺激;对单纯LPS组细胞仅进行同前的LPS刺激;对空白对照组细胞进行常规培养。

1.4.3. RAW264.7细胞中ATP含量检测

1.4.2分组培养12 h后的细胞, 根据ATP含量检测试剂盒说明书测定ATP量。样本数为4。

1.4.4. RAW264.7细胞中线粒体活性氧的检测

1.4.2分组培养12 h后的细胞, 加入5 μmol/L MitoSOX试剂孵育30 min, PBS洗涤3次后用流式细胞仪收集细胞。采用flowJo软件统计MitoSOX荧光强度并计算其阳性细胞百分比, 反映细胞内线粒体活性氧的阳性细胞百分比。样本数为4。

1.4.5. RAW264.7细胞线粒体膜电位的检测

1.4.2分组培养12 h后的细胞, 根据线粒体膜电位检测试剂盒说明书加入含探针的试剂(稀释比为1∶1 000), 37 ℃避光孵育30 min。PBS洗涤3次, 离心后弃上清液, 加PBS重新悬浮细胞, 采用全自动生物图像导航仪于激光扫描共聚焦显微镜200倍放大倍数下拍照, 检测荧光情况。若呈现红色荧光则说明线粒体正常, 即JC-1聚集在线粒体基质中形成聚合物;若呈现绿色荧光则说明线粒体膜电位下降或线粒体受损, 即JC-1只能以单体的形式存在于细胞质中。样本数为4。

1.4.6. RAW264.7细胞M1/M2型极化标志因子及炎症因子的mRNA表达量检测

1.4.2分组培养后12 h的细胞, 提取总mRNA, 采用实时荧光定量RT-PCR法检测巨噬细胞M1、M2型极化标志因子诱导型NOS(inducible nitric oxide synthase, iNOS)和精氨酸酶-1(arginase-1, Arg1), 炎症因子TNF-α和IL-1β的mRNA表达, 引物序列见表 1。按照荧光定量试剂盒说明书, 以GAPDH为内参照, 通过2-ΔΔCt法对TNF-α、IL-1β、iNOS和Arg1的mRNA表达进行定量分析。样本数为3。

表 1.

实时荧光定量反转录PCR法检测RAW264.7细胞的各引物序列及产物大小

Primer sequences and product sizes for detecting RAW264.7 cells by real-time fluorescence quantitative reverse transcription polymerase chain reaction

基因名称 引物序列(5'→3') 产物大小(bp)
注:IL为白细胞介素, iNOS为诱导型一氧化氮合酶, TNF为肿瘤坏死因子, Arg1为精氨酸酶-1, GAPDH为3-磷酸甘油醛脱氢酶
IL- 上游:TCCAGGATGAGGACATGAGCAC 105
下游:GAACGTCACACACCAGCAGGTTA
iNOS 上游:ACTACTGCTGGTGGTGACAA 106
下游:GAAGGTGTGGTTGAGTTCTCTAAG
TNF-α 上游:ACTCCAGGCGGTGCCTATGT 160
下游:GTGAGGGTCTGGGCCATAGAA
Arg1 上游:ACATTGGCTTGCGAGACGTA 109
下游:ATCACCTTGCCAATCCCCAG
GAPDH 上游:TGTGTCCGTCGTGGATCTGA 150
下游:TTGCTGTTGAAGTCGCAGGAG

1.5. 统计学处理

采用SPSS 20.0统计软件进行数据分析。计量资料数据均符合正态分布, 以x±s表示, 组间总体比较行单因素方差分析, 组间两两比较采用LSD-t检验, P < 0.05为差异有统计学意义。

2. 结果

2.1. 人ADSC外泌体的表征

人ADSC外泌体呈茶托状结构, 粒径分布在60~150 nm之间, 见图 1。人ADSC外泌体的CD9、CD63、CD81阳性率分别为(17.2±2.7)%、(15.4±1.4)%、(22.8±1.1)%。

图 1.

人脂肪间充质干细胞外泌体的表征。1A.可见囊泡呈清晰的茶托状结构  透射电子显微镜×40 000;1B.纳米颗粒跟踪分析仪检测显示粒径为60~150 nm

Characterization of human adipose mesenchymal stem cells-derived exosomes

注:图1B为横坐标经过lg处理的数据形成的描记图

图 1

2.2. 人ADSC外泌体对CLP小鼠ALI的影响

2.2.1. 对肺组织损伤的影响

术后24 h, 正常对照组小鼠肺组织结构清晰完整, 肺泡连接紧密、无炎症细胞浸润, 肺间质较薄、无出血;单纯CLP组较正常对照组小鼠的肺组织水肿明显, 炎症细胞浸润现象明显, 凋亡、坏死细胞明显增多;CLP+ADSC外泌体组较单纯CLP组小鼠肺组织水肿症状明显减轻, 炎症细胞浸润明显减少, 细胞凋亡、坏死情况明显改善。见图 2

图 2.

3组小鼠术后24 h肺组织损伤情况和肺组织细胞的凋亡情况。2A、2B、2C.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组小鼠肺组织损伤情况, 图2B较图2A中的肺组织水肿情况明显, 炎症细胞数明显增多, 图2C较图2B肺组织水肿明显改善, 炎症细胞数明显减少   苏木精-伊红×100;2D、2E、2F.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组小鼠肺组织细胞的凋亡情况, 图2E较图2D中的凋亡、坏死细胞数明显增加, 图2F较图2E凋亡、坏死细胞数明显减少  异硫氰酸荧光素-4', 6-二脒基-2-苯基吲哚×100

Lung tissue injury and the apoptosis of lung tissue cells in the 3 groups of mice at 24 hours after surgery

注:对单纯盲肠结扎穿孔(CLP)组小鼠行CLP后注射磷酸盐缓冲液, 对CLP+脂肪间充质干细胞(ADSC)外泌体组小鼠进行组名相应的处理, 对正常对照组小鼠仅注射磷酸盐缓冲液;凋亡细胞阳性染色为绿色, 细胞核阳性染色为蓝色

图 2

2.2.2. 对炎症反应的影响

术后24 h, 正常对照组、单纯CLP组和CLP+ADSC外泌体组小鼠血清中TNF-α含量分别为(76±4)、(362±11)、(221±14)pg/mL, IL-1β含量分别为(43±4)、(163±6)、(74±7)pg/mL, 组间总体比较, 差异有统计学意义(F值分别为793.40、437.00, P值均 < 0.001)。与正常对照组比较, 单纯CLP组小鼠血清中TNF-α和IL-1β含量均明显增加(t值分别为50.82、30.81, P < 0.001);与单纯CLP组比较, CLP+ADSC外泌体组小鼠血清中的TNF-α和IL-1β含量均明显降低(t值分别为16.36、19.25, P < 0.001)。

2.2.3. 对肺组织氧化应激水平的影响

术后24 h, 正常对照组、单纯CLP组和CLP+ADSC外泌体组小鼠肺组织匀浆液中丙二醛含量分别为(1.57±0.10)、(4.46±0.58)、(2.65±0.59)μmol/g, SOD含量分别为(64±7)、(37±8)、(53±7)U/g, 组间总体比较, 差异有统计学意义(F值分别为36.99、13.17, P值均 < 0.001)。与正常对照组比较, 单纯CLP组小鼠肺组织中丙二醛含量明显升高(t=9.89, P < 0.001), SOD含量明显降低(t=5.01, P=0.002);与单纯CLP组比较, CLP+ADSC外泌体组小鼠肺组织中丙二醛含量明显降低(t=4.38, P=0.005), SOD含量明显升高(t=2.97, P=0.025)。

2.2.4. 对肺组织中巨噬细胞表型的影响

术后24 h, 与正常对照组相比, 单纯CLP组小鼠的肺组织中CD86阳性细胞占比明显升高, CD206阳性细胞占比明显减少;与单纯CLP组相比, CLP+ADSC外泌体组小鼠肺组织中CD86阳性细胞占比明显减少, CD206阳性细胞占比明显升高。见图 3

图 3.

3组小鼠术后24 h肺组织中巨噬细胞浸润及分化情况辣根过氧化物酶-苏木素×100。3A、3B、3C.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组CD86(M1型巨噬细胞标志物)阳性细胞分布情况, 图3B较图3A中的M1型巨噬细胞占比明显升高, 图3C较图3B中的M1型巨噬细胞占比明显减少;3D、3E、3F.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组CD206(M2型巨噬细胞标志物)阳性细胞分布情况, 图3E较图3D中的M2型巨噬细胞占比明显减少, 图3F较图3E中的M2型巨噬细胞占比明显升高

The infiltration and the polarization of macrophages in lung tissue in the 3 groups of mice at 24 hours after surgery

注:对单纯盲肠结扎穿孔(CLP)组小鼠行CLP后注射磷酸盐缓冲液, 对CLP+脂肪间充质干细胞(ADSC)外泌体组小鼠进行组名相应的处理, 对正常对照组小鼠仅注射磷酸盐缓冲液;细胞阳性染色均为棕色, 细胞核阳性染色为蓝色

图 3

2.3. 人ADSC外泌体对RAW264.7细胞的影响

2.3.1. RAW264.7细胞内化人ADSC外泌体的情况

共培养12 h后, 人ADSC外泌体成功被RAW264.7细胞吞入细胞质, 见图 4

图 4.

共培养12 h后RAW264.7细胞吞噬人脂肪间充质干细胞(ADSC)外泌体的情况  PKH26-4', 6-二脒基-2-苯基吲哚×200。4A、4B、4C.分别为细胞中的外泌体染色、细胞核染色及复合染色情况, 可见人ADSC外泌体成功被RAW264.7细胞吞噬

Phagocytosis of human adipose mesenchymal stem cells-derived exosomes by RAW264.7 cells at 12 hours after co-culture

注:人ADSC外泌体阳性染色为红色, 细胞核阳性为蓝色

图 4

2.3.2. 人ADSC外泌体对RAW264.7细胞中ATP含量的影响

培养12 h后, 空白对照组、单纯LPS组和LPS+ADSC外泌体组细胞中ATP含量分别为(13.8±1.5)、(7.9±1.2)、(12.5±2.0)nmol/mg, 组间总体比较, 差异有统计学意义(F=15.48, P=0.001)。与空白对照组比较, 单纯LPS组细胞中ATP含量明显降低(t=6.28, P < 0.001);与单纯LPS组比较, LPS+ADSC外泌体组细胞中ATP含量明显升高(t=4.01, P=0.007)。

2.3.3. 人ADSC外泌体对RAW264.7细胞线粒体活性氧的影响

培养12 h后, 空白对照组、单纯LPS组和LPS+ADSC外泌体组细胞中线粒体活性氧的阳性细胞百分比分别为(22±4)%、(40±6)%、(30±5)%, 组间总体比较, 差异有统计学意义(F=12.61, P=0.002)。与空白对照组比较, 单纯LPS组细胞中线粒体活性氧的阳性细胞百分比明显增加(t=5.04, P=0.002);与单纯LPS组比较, LPS+ADSC外泌体组细胞中线粒体活性氧的阳性细胞百分比明显降低(t=2.65, P=0.038)。

2.3.4. 人ADSC外泌体对RAW264.7细胞线粒体膜电位的影响

培养12 h后, 与空白对照组相比, 单纯LPS组细胞的线粒体膜电位明显降低;LPS+ADSC外泌体组细胞的线粒体膜电位介于空白对照组和单纯LPS组之间。见图 5

图 5.

培养12 h后3组RAW264.7细胞中线粒体膜电位情况  JC-1×200。5A、5B、5C、5D.分别为空白对照组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况;5E、5F、5G、5H.分别为单纯LPS组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况;5I、5J、5K、5L.分别为LPS+ADSC外泌体组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况, 图5F较图5B中的线粒体膜电位下降明显, 图5J中的线粒体膜电位介于图5B与图5F之间, 图5K中的正常线粒体荧光强度介于图5C与图5G之间

Mitochondrial membrane potential of RAW264.7 cells in the 3 groups at 12 hours after culture

注:在内毒素/脂多糖(LPS)+脂肪间质干细胞(ADSC)外泌体组和单纯LPS组细胞中分别加入LPS+ADSC外泌体、LPS进行培养, 对空白对照组细胞进行常规培养;细胞核阳性染色为蓝色, 受损或膜电位下降的线粒体阳性染色为绿色, 正常线粒体阳性染色为红色

图 5

2.3.5. 人ADSC外泌体对RAW264.7细胞M1/M2型标志因子及炎症因子的影响

培养12 h后, 空白对照组、单纯LPS组和LPS+ADSC外泌体组细胞中TNF-α、IL-1β、iNOS、Arg1的mRNA表达量组间总体比较, 差异均有统计学意义(P < 0.05)。与空白对照组比较, 单纯LPS组细胞中TNF-α、IL-1β、iNOS的mRNA表达量均明显升高(P < 0.05), Arg1的mRNA表达量降低但差异无统计学意义(P > 0.05);与单纯LPS组比较, LPS+ADSC外泌体组细胞中TNF-α、IL-1β、iNOS的mRNA表达量均明显降低(P < 0.05), Arg1的mRNA表达量明显升高(P < 0.05)。见表 2

表 2.

培养12 h后3组RAW264.7细胞M1/M2型极化标志因子及炎症因子的mRNA表达量比较(x±s

Comparison of mRNA expression levels of the M1/M2 polarization markers and the inflammatory factors of RAW264.7 cells in the 3 groups at 12 hours after culture

组别 样本数 TNF-α IL-1β Arg1 iNOS
注:在内毒素/脂多糖(LPS)+脂肪间质干细胞(ADSC)外泌体组和单纯LPS组细胞中分别加入LPS+ADSC外泌体、LPS进行培养, 对空白对照组细胞进行常规培养;IL为白细胞介素, iNOS为诱导型一氧化氮合酶, TNF为肿瘤坏死因子, Arg1为精氨酸酶-1;F值、P值为组间总体比较所得, t1值、P1值为空白对照组与单纯LPS组各指标比较所得, t2值、P2值为单纯LPS组与LPS+ADSC外泌体组各指标比较所得
空白对照组 3 1.01±0.17 1.00± 0.09 1.00±0.05 1.00±0.04
单纯LPS组 3 85.60±8.87 1 648.67± 91.95 0.84±0.10 2.46±0.33
LPS+ADSC外泌体组 3 23.03±3.47 382.33± 31.26 1.35±0.07 1.44±0.07
F 190.96 709.92 36.50 44.67
P < 0.001 < 0.001 < 0.001 < 0.001
t1 16.51 31.04 2.40 7.70
P1 < 0.001 < 0.001 0.077 < 0.001
t2 11.38 22.58 7.66 5.28
P2 < 0.001 < 0.001 0.002 0.006

3. 讨论

ALI是脓毒症患者常见的并发症之一, 属于临床常见的危重症, 发病急、致死率高[27-31]。其特征是肺泡上皮细胞和内皮细胞损伤、肺部炎症细胞浸润及充血性水肿等, 严重感染、创伤后的肺部或全身不可控的炎症是主要发病诱因。目前以原发病的对症治疗、呼吸支持为主, 总体上缺乏特效的药物及治疗手段, 治疗效果不太理想[1, 32-33]。因此, 深入探究ALI发生的机制, 寻找ALI预防措施及新型治疗药物具有重要意义。

巨噬细胞常通过吞噬作用释放活性氧以及产生炎症细胞因子来发挥免疫调节作用。ALI发生时, 大量炎症细胞被募集, 其中肺泡巨噬细胞首先被激活并产生大量的活性氧, 最终造成细胞和组织损伤, 甚至导致MODS。因此, 抑制炎症反应及减轻细胞氧化应激损伤, 是减轻脓毒症组织器官损伤的重要治疗策略[10, 34-38]。本团队的前期研究及其他学者的研究均显示, ADSC外泌体可以调控巨噬细胞, 减轻巨噬细胞引起的炎症反应进而发挥其保护作用[20, 39-40]。本研究显示, CLP+ADSC外泌体组较单纯CLP组小鼠肺水肿症状明显减轻, 炎症细胞浸润明显减少, 细胞凋亡、坏死情况明显改善, 同时检测到炎症反应因子TNF-α、IL-1β的表达水平明显降低, 氧化产物丙二醛含量明显降低, 抗氧化物质SOD含量明显升高, 这与前述研究结果类似。本研究还显示, CLP+ADSC外泌体组较单纯CLP组小鼠肺组织中CD86阳性细胞即M1型巨噬细胞占比减少、CD206阳性细胞即M2型巨噬细胞占比增多;ADSC外泌体可以下调LPS诱导的M1型巨噬细胞特异性标志物iNOS的mRNA表达, 而上调M2型巨噬细胞特异性标志物Arg1的mRNA表达, 这表明ADSC外泌体可以抑制LPS诱导的巨噬细胞炎症反应, 促进巨噬细胞向M2型极化, 通过抑制巨噬细胞炎症反应进而改善脓毒症诱导的ALI。

线粒体是细胞内的主要产能结构, 线粒体发生氧化磷酸化的过程不仅可以为细胞生长提供生物能量和生物中间体, 还可以通过代谢-表观遗传调节决定细胞状态和功能[41-43]。在有害物质的刺激下, 线粒体易发生肿胀、碎裂, 基质密度降低和嵴的数量减少, 最终引起线粒体功能障碍, 表现为线粒体活性氧增加、ATP产生减少、DNA损伤以及由此产生的氧化应激引起细胞损伤[44-48]。线粒体功能障碍引起的氧化应激增强可促进大量活性氧生成, 进而激活核苷酸结合寡聚化结构域样受体蛋白3等多种途径, 促进M1型巨噬细胞的极化, 导致一系列瀑布样炎症反应[49-52]。研究显示, 在ALI、ARDS等多种疾病的发病过程中, 线粒体功能障碍参与了过度炎症反应和过度活性氧产生[9-10, 53]。本研究观察到单纯LPS组相较于空白对照组的RAW264.7细胞ATP含量降低, 线粒体膜电位下降、线粒体活性氧生成增加。活性氧是细胞有氧代谢过程中产生的中间产物, 可与不饱和脂肪酸形成脂质活性氧, 从而破坏细胞内膜结构, 造成细胞损伤。线粒体作为氧化磷酸化的关键场所, 参与了活性氧的产生和代谢, 线粒体不仅是活性氧的主要来源, 也是活性氧作用的主要靶点。LPS在诱导炎症反应的同时可进一步促进活性氧生成, 继而导致线粒体功能障碍及膜电位下降, 最终导致线粒体功能紊乱[54-55]。因此, 恢复线粒体功能稳态对于维持巨噬细胞的正常状态和防止其对LPS刺激的过度反应至关重要。

总之, 本研究显示人ADSC外泌体可被RAW264.7细胞内吞或吞噬, 进而改善LPS诱导的巨噬细胞线粒体功能障碍, 使细胞内线粒体活性氧水平显著降低, 线粒体膜电位得到恢复, 从而重新编程巨噬细胞的代谢状态, 维持ATP供应, 抑制巨噬细胞持续向M1型极化, 减轻炎症反应, 并表现出对脓毒症小鼠肺损伤的抑制作用。后期本团队将探究在脓毒症诱发的ALI过程中, 人ADSC外泌体改善巨噬细胞线粒体功能障碍, 促进组织损伤修复的确切作用机制等。

Funding Statement

国家自然科学基金面上项目(82272269)

General Program of National Natural Science Foundation of China (82272269)

利益冲突  所有作者均声明不存在利益冲突

作者贡献声明  白晓智:实验设计、实施研究、起草文章;陶克、官浩:研究指导、论文修改、经费支持;刘洋:分析、解释数据;郝彤、张浩:实施研究、采集数据

本文亮点

(1) 证实人脂肪间充质干细胞(ADSC)外泌体可改善内毒素/脂多糖诱导的小鼠巨噬细胞线粒体功能障碍, 抑制巨噬细胞持续向M1型极化, 减轻炎症反应。

(2) 证实人ADSC外泌体可改善脓毒症小鼠急性肺损伤, 减轻氧化应激、炎症反应, 该作用可能通过调节巨噬细胞线粒体功能来实现。

Highlights

(1) It was confirmed that human adipose mesenchymal stem cells (ADSC)-derived exosomes could improve lipopolysaccharide-induced mitochondrial dysfunction in mouse macrophages, inhibit the continuous polarization of macrophages toward M1, and reduce the inflammatory response.

(2) It was confirmed that human ADSC-exosomes could improve acute lung injury in septic mice, and alleviate oxidative stress and inflammatory response. This effect might be achieved by regulating the mitochondrial function of macrophages.

Contributor Information

陶 克 (Ke Tao), Email: tao-ke2001@163.com.

官 浩 (Hao Guan), Email: guanhao@hotmail.com.

References

  • 1.Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022;136(10):747–769. doi: 10.1042/CS20210879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Rawal G, Yadav S, Kumar R. Acute respiratory distress syndrome: an update and review. J Transl Int Med. 2018;6(2):74–77. doi: 10.1515/jtim-2016-0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23(4):243–252. doi: 10.1089/jamp.2009.0775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Luh SP, Chiang CH. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies. J Zhejiang Univ Sci B. 2007;8(1):60–69. doi: 10.1631/jzus.2007.B0060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30(11):511–528. doi: 10.1093/intimm/dxy054. [DOI] [PubMed] [Google Scholar]
  • 7.Gibbings SL, Thomas SM, Atif SM, et al. Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol. 2017;57(1):66–76. doi: 10.1165/rcmb.2016-0361OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 2014;306(8):L709–725. doi: 10.1152/ajplung.00341.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Schumacker PT, Gillespie MN, Nakahira K, et al. Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol. 2014;306(11):L962–974. doi: 10.1152/ajplung.00073.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kellner M, Noonepalle S, Lu Q, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) Adv Exp Med Biol. 2017;967:105–137. doi: 10.1007/978-3-319-63245-2_8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tan HY, Wang N, Li S, et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev. 2016;2016:2795090. doi: 10.1155/2016/2795090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684–696. doi: 10.1016/j.celrep.2016.09.008. [DOI] [PubMed] [Google Scholar]
  • 13.邱 煜程, 周 显玉, 刘 菲, et al. 间充质干细胞及其外泌体在移植中的应用进展. 组织工程与重建外科杂志. 2023;19(2):184–188. doi: 10.3969/j.issn.1673-0364.2023.02.016. [DOI] [Google Scholar]
  • 14.Yu T, Liu H, Gao M, et al. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase 3β [J/OL]. Burns Trauma, 2024, 12: tkae042[2024-09-27]. https://pubmed.ncbi.nlm.nih.gov/39502342/. DOI: 10.1093/burnst/tkae042.
  • 15.蒲 倩, 修 光辉, 孙 洁, et al. 间充质干细胞外泌体在脓毒症多器官功能障碍中作用的研究进展. 中华危重病急救医学. 2021;33(6):757–760. doi: 10.3760/cma.j.cn121430-20200908-00620. [DOI] [PubMed] [Google Scholar]
  • 16.Hu Q, Lyon CJ, Fletcher JK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B. 2021;11(6):1493–1512. doi: 10.1016/j.apsb.2020.12.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jing W, Wang H, Zhan L, et al. Extracellular vesicles, new players in sepsis and acute respiratory distress syndrome. Front Cell Infect Microbiol. 2022;12:853840. doi: 10.3389/fcimb.2022.853840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Homma K, Bazhanov N, Hashimoto K, et al. Mesenchymal stem cell-derived exosomes for treatment of sepsis. Front Immunol. 2023;14:1136964. doi: 10.3389/fimmu.2023.1136964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res. 2024;11(1):24. doi: 10.1186/s40779-024-00527-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bai X, Li J, Li L, et al. Extracellular vesicles from adipose tissue-derived stem cells affect Notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice. Front Immunol. 2020;11:1391. doi: 10.3389/fimmu.2020.01391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Dejager L, Pinheiro I, Dejonckheere E, et al. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19(4):198–208. doi: 10.1016/j.tim.2011.01.001. [DOI] [PubMed] [Google Scholar]
  • 22.Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356. doi: 10.1186/s13054-021-03775-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Bai X, He T, Liu Y, et al. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development. Front Immunol. 2018;9:762. doi: 10.3389/fimmu.2018.00762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.蔡 维霞, 沈 括, 曹 涛, et al. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制. 中华烧伤与创面修复杂志. 2022;38(3):266–275. doi: 10.3760/cma.j.cn501120-20211020-00362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Shen K, Wang X, Wang Y, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol. 2023;62:102655. doi: 10.1016/j.redox.2023.102655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wu H, Wang Y, Zhang Y, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol. 2020;32:101500. doi: 10.1016/j.redox.2020.101500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Xu H, Qi Q, Yan X. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(1):165–175. doi: 10.1007/s00210-020-01880-8. [DOI] [PubMed] [Google Scholar]
  • 28.Jin C, Chen J, Gu J, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury. Chin Med J (Engl) 2020;133(18):2212–2218. doi: 10.1097/CM9.0000000000000928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Yehya N, Smith L, Thomas NJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the second pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2023;24(12 Suppl 2):S87–98. doi: 10.1097/PCC.0000000000003161. [DOI] [PubMed] [Google Scholar]
  • 30.Wang S, Hu L, Fu Y, et al. Inhibition of IRE1α/XBP1 axis alleviates LPS-induced acute lung injury by suppressing TXNIP/NLRP3 inflammasome activation and ERK/p65 signaling pathway. Respir Res. 2024;25(1):417. doi: 10.1186/s12931-024-03044-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–350. doi: 10.5858/arpa.2015-0519-RA. [DOI] [PubMed] [Google Scholar]
  • 32.赵 松韵, 万 志杰, 曹 曦元, et al. 靶向DNA损伤应答在小细胞肺癌中的作用研究进展. 解放军医学杂志. 2022;47(8):838–844. doi: 10.11855/j.issn.0577-7402.2022.08.0838. [DOI] [Google Scholar]
  • 33.李 林, 邢 福席, 付 全有, et al. 脓毒症急性肺损伤治疗的研究进展. 中华医院感染学杂志. 2024;34(1):149–155. doi: 10.11816/cn.ni.2024-236123. [DOI] [Google Scholar]
  • 34.Zhang W, Chen H, Xu Z, et al. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol. 2023;122:110563. doi: 10.1016/j.intimp.2023.110563. [DOI] [PubMed] [Google Scholar]
  • 35.Bar-Or D, Carrick MM, Mains CW, et al. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment? Redox Rep. 2015;20(5):193–197. doi: 10.1179/1351000215Y.0000000005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal. 2021;35(15):1291–1307. doi: 10.1089/ars.2021.0027. [DOI] [PubMed] [Google Scholar]
  • 37.Chen X, Tang J, Shuai W, et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 2020;69(9):883–895. doi: 10.1007/s00011-020-01378-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Yuan Y, Fan G, Liu Y, et al. Correction to: the transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(5):650. doi: 10.1038/s41423-022-00839-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wang X, Chen S, Lu R, et al. Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway. Heliyon. 2022;8(11):e11495. doi: 10.1016/j.heliyon.2022.e11495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 2018;67(2):235–247. doi: 10.2337/db17-0356. [DOI] [PubMed] [Google Scholar]
  • 41.West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–480. doi: 10.1038/nature09973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.West AP, Khoury-Hanold W, Staron M, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–557. doi: 10.1038/nature14156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hong P, Yang H, Wu Y, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019;10(1):242. doi: 10.1186/s13287-019-1358-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Wang Z, White A, Wang X, et al. Mitochondrial fission mediated cigarette smoke-induced pulmonary endothelial injury. Am J Respir Cell Mol Biol. 2020;63(5):637–651. doi: 10.1165/rcmb.2020-0008OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Videla LA, Marimán A, Ramos B, et al. Standpoints in mitochondrial dysfunction: underlying mechanisms in search of therapeutic strategies. Mitochondrion. 2022;63:9–22. doi: 10.1016/j.mito.2021.12.006. [DOI] [PubMed] [Google Scholar]
  • 46.Hoffmann RF, Zarrintan S, Brandenburg SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14(1):97. doi: 10.1186/1465-9921-14-97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107(1):57–64. doi: 10.1093/bja/aer093. [DOI] [PubMed] [Google Scholar]
  • 48.Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–1077. doi: 10.1016/j.bbadis.2016.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Xian H, Liu Y, Rundberg Nilsson A, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54(7):1463–1477. e11. doi: 10.1016/j.immuni.2021.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560(7717):198–203. doi: 10.1038/s41586-018-0372-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Xu Z, Shen J, Lin L, et al. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation. Environ Int. 2023;181:108296. doi: 10.1016/j.envint.2023.108296. [DOI] [PubMed] [Google Scholar]
  • 52.Chen Y, Ye X, Escames G, et al. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett. 2023;28(1):51. doi: 10.1186/s11658-023-00462-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi: 10.1089/ars.2012.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Shang-Guan K, Wang M, Htwe N, et al. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. Plant Physiol. 2018;176(3):2543–2556. doi: 10.1104/pp.17.01637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Cai S, Zhao M, Zhou B, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clin Invest. 2023;133(4):e159498. doi: 10.1172/JCI159498. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Zhonghua Shaoshang yu Chuangmian Xiufu Zazhi are provided here courtesy of Chinese Medical Association

RESOURCES