Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jun 1;17(11):3091–3100. doi: 10.1093/emboj/17.11.3091

Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.

S Dennler 1, S Itoh 1, D Vivien 1, P ten Dijke 1, S Huet 1, J M Gauthier 1
PMCID: PMC1170648  PMID: 9606191

Abstract

Smad proteins play a key role in the intracellular signalling of transforming growth factor beta (TGF beta), which elicits a large variety of cellular responses. Upon TGF beta receptor activation, Smad2 and Smad3 become phosphorylated and form heteromeric complexes with Smad4. These complexes translocate to the nucleus where they control expression of target genes. However, the mechanism by which Smads mediate transcriptional regulation is largely unknown. Human plasminogen activator inhibitor-1 (PAI-1) is a gene that is potently induced by TGF beta. Here we report the identification of Smad3/Smad4 binding sequences, termed CAGA boxes, within the promoter of the human PAI-1 gene. The CAGA boxes confer TGF beta and activin, but not bone morphogenetic protein (BMP) stimulation to a heterologous promoter reporter construct. Importantly, mutation of the three CAGA boxes present in the PAI-1 promoter was found to abolish TGF beta responsiveness. Thus, CAGA elements are essential and sufficient for the induction by TGF beta. In addition, TGFbeta induces the binding of a Smad3/Smad4-containing nuclear complex to CAGA boxes. Furthermore, bacterially expressed Smad3 and Smad4 proteins, but not Smad1 nor Smad2 protein, bind directly to this sequence in vitro. The presence of this box in TGF beta-responsive regions of several other genes suggests that this may be a widely used motif in TGF beta-regulated transcription.

Full Text

The Full Text of this article is available as a PDF (436.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdollah S., Macías-Silva M., Tsukazaki T., Hayashi H., Attisano L., Wrana J. L. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 1997 Oct 31;272(44):27678–27685. doi: 10.1074/jbc.272.44.27678. [DOI] [PubMed] [Google Scholar]
  2. Baker J. C., Harland R. M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 1996 Aug 1;10(15):1880–1889. doi: 10.1101/gad.10.15.1880. [DOI] [PubMed] [Google Scholar]
  3. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  4. Chen X., Weisberg E., Fridmacher V., Watanabe M., Naco G., Whitman M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature. 1997 Sep 4;389(6646):85–89. doi: 10.1038/38008. [DOI] [PubMed] [Google Scholar]
  5. Chen Y., Bhushan A., Vale W. Smad8 mediates the signaling of the ALK-2 [corrected] receptor serine kinase. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12938–12943. doi: 10.1073/pnas.94.24.12938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Y., Lebrun J. J., Vale W. Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12992–12997. doi: 10.1073/pnas.93.23.12992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Datto M. B., Hu P. P., Kowalik T. F., Yingling J., Wang X. F. The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol. 1997 Apr;17(4):2030–2037. doi: 10.1128/mcb.17.4.2030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Derynck R. TGF-beta-receptor-mediated signaling. Trends Biochem Sci. 1994 Dec;19(12):548–553. doi: 10.1016/0968-0004(94)90059-0. [DOI] [PubMed] [Google Scholar]
  9. Elbendary A., Berchuck A., Davis P., Havrilesky L., Bast R. C., Jr, Iglehart J. D., Marks J. R. Transforming growth factor beta 1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differ. 1994 Dec;5(12):1301–1307. [PubMed] [Google Scholar]
  10. Eppert K., Scherer S. W., Ozcelik H., Pirone R., Hoodless P., Kim H., Tsui L. C., Bapat B., Gallinger S., Andrulis I. L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996 Aug 23;86(4):543–552. doi: 10.1016/s0092-8674(00)80128-2. [DOI] [PubMed] [Google Scholar]
  11. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  12. Hata A., Lo R. S., Wotton D., Lagna G., Massagué J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature. 1997 Jul 3;388(6637):82–87. doi: 10.1038/40424. [DOI] [PubMed] [Google Scholar]
  13. Hayashi H., Abdollah S., Qiu Y., Cai J., Xu Y. Y., Grinnell B. W., Richardson M. A., Topper J. N., Gimbrone M. A., Jr, Wrana J. L. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997 Jun 27;89(7):1165–1173. doi: 10.1016/s0092-8674(00)80303-7. [DOI] [PubMed] [Google Scholar]
  14. Heldin C. H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997 Dec 4;390(6659):465–471. doi: 10.1038/37284. [DOI] [PubMed] [Google Scholar]
  15. Hoodless P. A., Haerry T., Abdollah S., Stapleton M., O'Connor M. B., Attisano L., Wrana J. L. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 1996 May 17;85(4):489–500. doi: 10.1016/s0092-8674(00)81250-7. [DOI] [PubMed] [Google Scholar]
  16. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997 Oct 9;389(6651):622–626. doi: 10.1038/39355. [DOI] [PubMed] [Google Scholar]
  17. Inagaki Y., Truter S., Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem. 1994 May 20;269(20):14828–14834. [PubMed] [Google Scholar]
  18. Keeton M. R., Curriden S. A., van Zonneveld A. J., Loskutoff D. J. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem. 1991 Dec 5;266(34):23048–23052. [PubMed] [Google Scholar]
  19. Kim J., Johnson K., Chen H. J., Carroll S., Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature. 1997 Jul 17;388(6639):304–308. doi: 10.1038/40906. [DOI] [PubMed] [Google Scholar]
  20. Kim S. J., Denhez F., Kim K. Y., Holt J. T., Sporn M. B., Roberts A. B. Activation of the second promoter of the transforming growth factor-beta 1 gene by transforming growth factor-beta 1 and phorbol ester occurs through the same target sequences. J Biol Chem. 1989 Nov 15;264(32):19373–19378. [PubMed] [Google Scholar]
  21. Kim S. J., Jeang K. T., Glick A. B., Sporn M. B., Roberts A. B. Promoter sequences of the human transforming growth factor-beta 1 gene responsive to transforming growth factor-beta 1 autoinduction. J Biol Chem. 1989 Apr 25;264(12):7041–7045. [PubMed] [Google Scholar]
  22. Kretzschmar M., Liu F., Hata A., Doody J., Massagué J. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 1997 Apr 15;11(8):984–995. doi: 10.1101/gad.11.8.984. [DOI] [PubMed] [Google Scholar]
  23. Kretzschmar M., Massagué J. SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev. 1998 Feb;8(1):103–111. doi: 10.1016/s0959-437x(98)80069-5. [DOI] [PubMed] [Google Scholar]
  24. Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996 Oct 31;383(6603):832–836. doi: 10.1038/383832a0. [DOI] [PubMed] [Google Scholar]
  25. Li J. M., Nichols M. A., Chandrasekharan S., Xiong Y., Wang X. F. Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem. 1995 Nov 10;270(45):26750–26753. doi: 10.1074/jbc.270.45.26750. [DOI] [PubMed] [Google Scholar]
  26. Lin Y. C., Stavnezer J. Regulation of transcription of the germ-line Ig alpha constant region gene by an ATF element and by novel transforming growth factor-beta 1-responsive elements. J Immunol. 1992 Nov 1;149(9):2914–2925. [PubMed] [Google Scholar]
  27. Liu F., Hata A., Baker J. C., Doody J., Cárcamo J., Harland R. M., Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996 Jun 13;381(6583):620–623. doi: 10.1038/381620a0. [DOI] [PubMed] [Google Scholar]
  28. Liu F., Pouponnot C., Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157–3167. doi: 10.1101/gad.11.23.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Macías-Silva M., Abdollah S., Hoodless P. A., Pirone R., Attisano L., Wrana J. L. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996 Dec 27;87(7):1215–1224. doi: 10.1016/s0092-8674(00)81817-6. [DOI] [PubMed] [Google Scholar]
  30. Massagué J., Weis-Garcia F. Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv. 1996;27:41–64. [PubMed] [Google Scholar]
  31. Meersseman G., Verschueren K., Nelles L., Blumenstock C., Kraft H., Wuytens G., Remacle J., Kozak C. A., Tylzanowski P., Niehrs C. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech Dev. 1997 Jan;61(1-2):127–140. doi: 10.1016/s0925-4773(96)00629-6. [DOI] [PubMed] [Google Scholar]
  32. Nakao A., Afrakhte M., Morén A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N. E., Heldin C. H. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997 Oct 9;389(6651):631–635. doi: 10.1038/39369. [DOI] [PubMed] [Google Scholar]
  33. Nakao A., Imamura T., Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E., Tamaki K., Hanai J., Heldin C. H., Miyazono K. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997 Sep 1;16(17):5353–5362. doi: 10.1093/emboj/16.17.5353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newfeld S. J., Chartoff E. H., Graff J. M., Melton D. A., Gelbart W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development. 1996 Jul;122(7):2099–2108. doi: 10.1242/dev.122.7.2099. [DOI] [PubMed] [Google Scholar]
  35. Newfeld S. J., Mehra A., Singer M. A., Wrana J. L., Attisano L., Gelbart W. M. Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade. Development. 1997 Aug;124(16):3167–3176. doi: 10.1242/dev.124.16.3167. [DOI] [PubMed] [Google Scholar]
  36. Riccio A., Pedone P. V., Lund L. R., Olesen T., Olsen H. S., Andreasen P. A. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol. 1992 Apr;12(4):1846–1855. doi: 10.1128/mcb.12.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roberts A. B., Sporn M. B. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors. 1993;8(1):1–9. doi: 10.3109/08977199309029129. [DOI] [PubMed] [Google Scholar]
  38. Sadowski H. B., Gilman M. Z. Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature. 1993 Mar 4;362(6415):79–83. doi: 10.1038/362079a0. [DOI] [PubMed] [Google Scholar]
  39. Savage C., Das P., Finelli A. L., Townsend S. R., Sun C. Y., Baird S. E., Padgett R. W. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):790–794. doi: 10.1073/pnas.93.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sekelsky J. J., Newfeld S. J., Raftery L. A., Chartoff E. H., Gelbart W. M. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1347–1358. doi: 10.1093/genetics/139.3.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shi Y., Hata A., Lo R. S., Massagué J., Pavletich N. P. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997 Jul 3;388(6637):87–93. doi: 10.1038/40431. [DOI] [PubMed] [Google Scholar]
  42. Souchelnytskyi S., Tamaki K., Engström U., Wernstedt C., ten Dijke P., Heldin C. H. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem. 1997 Oct 31;272(44):28107–28115. doi: 10.1074/jbc.272.44.28107. [DOI] [PubMed] [Google Scholar]
  43. Suzuki A., Chang C., Yingling J. M., Wang X. F., Hemmati-Brivanlou A. Smad5 induces ventral fates in Xenopus embryo. Dev Biol. 1997 Apr 15;184(2):402–405. doi: 10.1006/dbio.1997.8548. [DOI] [PubMed] [Google Scholar]
  44. Thomsen G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development. 1996 Aug;122(8):2359–2366. doi: 10.1242/dev.122.8.2359. [DOI] [PubMed] [Google Scholar]
  45. Westerhausen D. R., Jr, Hopkins W. E., Billadello J. J. Multiple transforming growth factor-beta-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem. 1991 Jan 15;266(2):1092–1100. [PubMed] [Google Scholar]
  46. Wiersdorff V., Lecuit T., Cohen S. M., Mlodzik M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development. 1996 Jul;122(7):2153–2162. doi: 10.1242/dev.122.7.2153. [DOI] [PubMed] [Google Scholar]
  47. Wieser R., Wrana J. L., Massagué J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J. 1995 May 15;14(10):2199–2208. doi: 10.1002/j.1460-2075.1995.tb07214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wrana J. L., Attisano L., Cárcamo J., Zentella A., Doody J., Laiho M., Wang X. F., Massagué J. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992 Dec 11;71(6):1003–1014. doi: 10.1016/0092-8674(92)90395-s. [DOI] [PubMed] [Google Scholar]
  49. Wrana J. L., Attisano L., Wieser R., Ventura F., Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341–347. doi: 10.1038/370341a0. [DOI] [PubMed] [Google Scholar]
  50. Wu R. Y., Zhang Y., Feng X. H., Derynck R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol. 1997 May;17(5):2521–2528. doi: 10.1128/mcb.17.5.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamashita H., ten Dijke P., Huylebroeck D., Sampath T. K., Andries M., Smith J. C., Heldin C. H., Miyazono K. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol. 1995 Jul;130(1):217–226. doi: 10.1083/jcb.130.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yingling J. M., Das P., Savage C., Zhang M., Padgett R. W., Wang X. F. Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8940–8944. doi: 10.1073/pnas.93.17.8940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yingling J. M., Datto M. B., Wong C., Frederick J. P., Liberati N. T., Wang X. F. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol Cell Biol. 1997 Dec;17(12):7019–7028. doi: 10.1128/mcb.17.12.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zawel L., Dai J. L., Buckhaults P., Zhou S., Kinzler K. W., Vogelstein B., Kern S. E. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998 Mar;1(4):611–617. doi: 10.1016/s1097-2765(00)80061-1. [DOI] [PubMed] [Google Scholar]
  55. Zhang Y., Feng X., We R., Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168–172. doi: 10.1038/383168a0. [DOI] [PubMed] [Google Scholar]
  56. Zhang Y., Musci T., Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol. 1997 Apr 1;7(4):270–276. doi: 10.1016/s0960-9822(06)00123-0. [DOI] [PubMed] [Google Scholar]
  57. de Caestecker M. P., Hemmati P., Larisch-Bloch S., Ajmera R., Roberts A. B., Lechleider R. J. Characterization of functional domains within Smad4/DPC4. J Biol Chem. 1997 May 23;272(21):13690–13696. doi: 10.1074/jbc.272.21.13690. [DOI] [PubMed] [Google Scholar]
  58. de Winter J. P., Roelen B. A., ten Dijke P., van der Burg B., van den Eijnden-van Raaij A. J. DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells. Oncogene. 1997 Apr 24;14(16):1891–1899. doi: 10.1038/sj.onc.1201017. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES