Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jun 15;17(12):3297–3308. doi: 10.1093/emboj/17.12.3297

A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids.

M Fink 1, F Lesage 1, F Duprat 1, C Heurteaux 1, R Reyes 1, M Fosset 1, M Lazdunski 1
PMCID: PMC1170668  PMID: 9628867

Abstract

TWIK-1, TREK-1 and TASK K+ channels comprise a class of pore-forming subunits with four membrane-spanning segments and two P domains. Here we report the cloning of TRAAK, a 398 amino acid protein which is a new member of this mammalian class of K+ channels. Unlike TWIK-1, TREK-1 and TASK which are widely distributed in many different mouse tissues, TRAAK is present exclusively in brain, spinal cord and retina. Expression of TRAAK in Xenopus oocytes and COS cells induces instantaneous and non-inactivating currents that are not gated by voltage. These currents are only partially inhibited by Ba2+ at high concentrations and are insensitive to the other classical K+ channel blockers tetraethylammonium, 4-aminopyridine and Cs+. A particularly salient feature of TRAAK is that they can be stimulated by arachidonic acid (AA) and other unsaturated fatty acids but not by saturated fatty acids. These channels probably correspond to the functional class of fatty acid-stimulated K+ currents that recently were identified in native neuronal cells but have not yet been cloned. These TRAAK channels might be essential in normal physiological processes in which AA is known to play an important role, such as synaptic transmission, and also in pathophysiological processes such as brain ischemia. TRAAK channels are stimulated by the neuroprotective drug riluzole.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Backx P. H., Marban E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res. 1993 Apr;72(4):890–900. doi: 10.1161/01.res.72.4.890. [DOI] [PubMed] [Google Scholar]
  3. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78–80. doi: 10.1038/384078a0. [DOI] [PubMed] [Google Scholar]
  4. Barnard E. A. The transmitter-gated channels: a range of receptor types and structures. Trends Pharmacol Sci. 1996 Sep;17(9):305–309. [PubMed] [Google Scholar]
  5. Bazan N. G. Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann N Y Acad Sci. 1989;559:1–16. doi: 10.1111/j.1749-6632.1989.tb22594.x. [DOI] [PubMed] [Google Scholar]
  6. Bensimon G., Lacomblez L., Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994 Mar 3;330(9):585–591. doi: 10.1056/NEJM199403033300901. [DOI] [PubMed] [Google Scholar]
  7. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  8. Bryson H. M., Fulton B., Benfield P. Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs. 1996 Oct;52(4):549–563. doi: 10.2165/00003495-199652040-00010. [DOI] [PubMed] [Google Scholar]
  9. Buckler K. J. A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol. 1997 Feb 1;498(Pt 3):649–662. doi: 10.1113/jphysiol.1997.sp021890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burton K. P., Buja L. M., Sen A., Willerson J. T., Chien K. R. Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Am J Pathol. 1986 Aug;124(2):238–245. [PMC free article] [PubMed] [Google Scholar]
  11. Calabresi P., Maj R., Pisani A., Mercuri N. B., Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci. 1992 Nov;12(11):4224–4233. doi: 10.1523/JNEUROSCI.12-11-04224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chan P. H., Longar S., Chen S., Yu A. C., Hillered L., Chu L., Imaizumi S., Pereira B., Moore K., Woolworth V. The role of arachidonic acid and oxygen radical metabolites in the pathogenesis of vasogenic brain edema and astrocytic swelling. Ann N Y Acad Sci. 1989;559:237–247. doi: 10.1111/j.1749-6632.1989.tb22612.x. [DOI] [PubMed] [Google Scholar]
  13. Czempinski K., Zimmermann S., Ehrhardt T., Müller-Röber B. New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 1997 May 15;16(10):2565–2575. doi: 10.1093/emboj/16.10.2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997 Sep 1;16(17):5464–5471. doi: 10.1093/emboj/16.17.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Enyeart J. J., Mlinar B., Enyeart J. A. Adrenocorticotropic hormone and cAMP inhibit noninactivating K+ current in adrenocortical cells by an A-kinase-independent mechanism requiring ATP hydrolysis. J Gen Physiol. 1996 Oct;108(4):251–264. doi: 10.1085/jgp.108.4.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fink M., Duprat F., Lesage F., Reyes R., Romey G., Heurteaux C., Lazdunski M. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996 Dec 16;15(24):6854–6862. [PMC free article] [PubMed] [Google Scholar]
  17. Glowatzki E., Fakler G., Brändle U., Rexhausen U., Zenner H. P., Ruppersberg J. P., Fakler B. Subunit-dependent assembly of inward-rectifier K+ channels. Proc Biol Sci. 1995 Aug 22;261(1361):251–261. doi: 10.1098/rspb.1995.0145. [DOI] [PubMed] [Google Scholar]
  18. Goldstein S. A., Price L. A., Rosenthal D. N., Pausch M. H. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13256–13261. doi: 10.1073/pnas.93.23.13256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guillemare E., Honoré E., Pradier L., Lesage F., Schweitz H., Attali B., Barhanin J., Lazdunski M. Effects of the level of mRNA expression on biophysical properties, sensitivity to neurotoxins, and regulation of the brain delayed-rectifier K+ channels Kv1.2. Biochemistry. 1992 Dec 15;31(49):12463–12468. doi: 10.1021/bi00164a024. [DOI] [PubMed] [Google Scholar]
  20. Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
  21. Hartmann H. A., Kirsch G. E., Drewe J. A., Taglialatela M., Joho R. H., Brown A. M. Exchange of conduction pathways between two related K+ channels. Science. 1991 Feb 22;251(4996):942–944. doi: 10.1126/science.2000495. [DOI] [PubMed] [Google Scholar]
  22. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heurteaux C., Bertaina V., Widmann C., Lazdunski M. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9431–9435. doi: 10.1073/pnas.90.20.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Honoré E., Barhanin J., Attali B., Lesage F., Lazdunski M. External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1937–1941. doi: 10.1073/pnas.91.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
  26. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  27. Isomoto S., Kondo C., Kurachi Y. Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol. 1997 Feb;47(1):11–39. doi: 10.2170/jjphysiol.47.11. [DOI] [PubMed] [Google Scholar]
  28. Jan L. Y., Jan Y. N. Potassium channels and their evolving gates. Nature. 1994 Sep 8;371(6493):119–122. doi: 10.1038/371119a0. [DOI] [PubMed] [Google Scholar]
  29. Jurman M. E., Boland L. M., Liu Y., Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov;17(5):876–881. [PubMed] [Google Scholar]
  30. Kandel E. R., O'Dell T. J. Are adult learning mechanisms also used for development? Science. 1992 Oct 9;258(5080):243–245. doi: 10.1126/science.1411522. [DOI] [PubMed] [Google Scholar]
  31. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  32. Keros S., McBain C. J. Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J Neurosci. 1997 May 15;17(10):3476–3487. doi: 10.1523/JNEUROSCI.17-10-03476.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kim D., Sladek C. D., Aguado-Velasco C., Mathiasen J. R. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol. 1995 May 1;484(Pt 3):643–660. doi: 10.1113/jphysiol.1995.sp020693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Koh D. S., Jonas P., Bräu M. E., Vogel W. A TEA-insensitive flickering potassium channel active around the resting potential in myelinated nerve. J Membr Biol. 1992 Nov;130(2):149–162. doi: 10.1007/BF00231893. [DOI] [PubMed] [Google Scholar]
  35. Koyano K., Tanaka K., Kuba K. A patch-clamp study on the muscarine-sensitive potassium channel in bullfrog sympathetic ganglion cells. J Physiol. 1992 Aug;454:231–246. doi: 10.1113/jphysiol.1992.sp019262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  37. Leonoudakis D., Gray A. T., Winegar B. D., Kindler C. H., Harada M., Taylor D. M., Chavez R. A., Forsayeth J. R., Yost C. S. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci. 1998 Feb 1;18(3):868–877. doi: 10.1523/JNEUROSCI.18-03-00868.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romey G., Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 1996 Mar 1;15(5):1004–1011. [PMC free article] [PubMed] [Google Scholar]
  39. Lesage F., Lauritzen I., Duprat F., Reyes R., Fink M., Heurteaux C., Lazdunski M. The structure, function and distribution of the mouse TWIK-1 K+ channel. FEBS Lett. 1997 Jan 27;402(1):28–32. doi: 10.1016/s0014-5793(96)01491-3. [DOI] [PubMed] [Google Scholar]
  40. Lesage F., Reyes R., Fink M., Duprat F., Guillemare E., Lazdunski M. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 1996 Dec 2;15(23):6400–6407. [PMC free article] [PubMed] [Google Scholar]
  41. Lingueglia E., Voilley N., Waldmann R., Lazdunski M., Barbry P. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95–99. doi: 10.1016/0014-5793(93)81336-x. [DOI] [PubMed] [Google Scholar]
  42. MacKinnon R. Pore loops: an emerging theme in ion channel structure. Neuron. 1995 May;14(5):889–892. doi: 10.1016/0896-6273(95)90327-5. [DOI] [PubMed] [Google Scholar]
  43. Malgouris C., Bardot F., Daniel M., Pellis F., Rataud J., Uzan A., Blanchard J. C., Laduron P. M. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci. 1989 Nov;9(11):3720–3727. doi: 10.1523/JNEUROSCI.09-11-03720.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Meves H. Modulation of ion channels by arachidonic acid. Prog Neurobiol. 1994 Jun;43(2):175–186. doi: 10.1016/0301-0082(94)90012-4. [DOI] [PubMed] [Google Scholar]
  45. Nichols C. G., Lopatin A. N. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:171–191. doi: 10.1146/annurev.physiol.59.1.171. [DOI] [PubMed] [Google Scholar]
  46. Pellegrini M., Simoni A., Pellegrino M. Two types of K+ channels in excised patches of somatic membrane of the leech AP neuron. Brain Res. 1989 Apr 3;483(2):294–300. doi: 10.1016/0006-8993(89)90173-x. [DOI] [PubMed] [Google Scholar]
  47. Piomelli D., Pilon C., Giros B., Sokoloff P., Martres M. P., Schwartz J. C. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature. 1991 Sep 12;353(6340):164–167. doi: 10.1038/353164a0. [DOI] [PubMed] [Google Scholar]
  48. Piomelli D., Volterra A., Dale N., Siegelbaum S. A., Kandel E. R., Schwartz J. H., Belardetti F. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature. 1987 Jul 2;328(6125):38–43. doi: 10.1038/328038a0. [DOI] [PubMed] [Google Scholar]
  49. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol Rev. 1992 Oct;72(4 Suppl):S69–S88. doi: 10.1152/physrev.1992.72.suppl_4.S69. [DOI] [PubMed] [Google Scholar]
  50. Pratt J., Rataud J., Bardot F., Roux M., Blanchard J. C., Laduron P. M., Stutzmann J. M. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett. 1992 Jun 22;140(2):225–230. doi: 10.1016/0304-3940(92)90108-j. [DOI] [PubMed] [Google Scholar]
  51. Premkumar L. S., Chung S. H., Gage P. W. GABA-induced potassium channels in cultured neurons. Proc Biol Sci. 1990 Aug 22;241(1301):153–158. doi: 10.1098/rspb.1990.0079. [DOI] [PubMed] [Google Scholar]
  52. Premkumar L. S., Gage P. W., Chung S. H. Coupled potassium channels induced by arachidonic acid in cultured neurons. Proc Biol Sci. 1990 Oct 22;242(1303):17–22. doi: 10.1098/rspb.1990.0097. [DOI] [PubMed] [Google Scholar]
  53. Quast U. Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol. 1992;6(7):279–293. doi: 10.1111/j.1472-8206.1992.tb00122.x. [DOI] [PubMed] [Google Scholar]
  54. Romettino S., Lazdunski M., Gottesmann C. Anticonvulsant and sleep-waking influences of riluzole in a rat model of absence epilepsy. Eur J Pharmacol. 1991 Jul 9;199(3):371–373. doi: 10.1016/0014-2999(91)90503-i. [DOI] [PubMed] [Google Scholar]
  55. Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
  56. Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Sewing S., Pongs O. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature. 1990 Jun 7;345(6275):535–537. doi: 10.1038/345535a0. [DOI] [PubMed] [Google Scholar]
  57. Shen K. Z., North R. A., Surprenant A. Potassium channels opened by noradrenaline and other transmitters in excised membrane patches of guinea-pig submucosal neurones. J Physiol. 1992 Jan;445:581–599. doi: 10.1113/jphysiol.1992.sp018941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Siegelbaum S. A., Camardo J. S., Kandel E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature. 1982 Sep 30;299(5882):413–417. doi: 10.1038/299413a0. [DOI] [PubMed] [Google Scholar]
  59. Siesjö B. K., Agardh C. D., Bengtsson F., Smith M. L. Arachidonic acid metabolism in seizures. Ann N Y Acad Sci. 1989;559:323–339. doi: 10.1111/j.1749-6632.1989.tb22619.x. [DOI] [PubMed] [Google Scholar]
  60. Stutzmann J. M., Böhme G. A., Gandolfo G., Gottesmann C., Lafforgue J., Blanchard J. C., Laduron P. M., Lazdunski M. Riluzole prevents hyperexcitability produced by the mast cell degranulating peptide and dendrotoxin I in the rat. Eur J Pharmacol. 1991 Feb 7;193(2):223–229. doi: 10.1016/0014-2999(91)90040-w. [DOI] [PubMed] [Google Scholar]
  61. Theander S., Fåhraeus C., Grampp W. Analysis of leak current properties in the lobster stretch receptor neurone. Acta Physiol Scand. 1996 Aug;157(4):493–509. doi: 10.1046/j.1365-201X.1996.510271000.x. [DOI] [PubMed] [Google Scholar]
  62. Villarroel A., Schwarz T. L. Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid. J Neurosci. 1996 Feb 1;16(3):1016–1025. doi: 10.1523/JNEUROSCI.16-03-01016.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Villarroel A. Suppression of neuronal potassium A-current by arachidonic acid. FEBS Lett. 1993 Dec 6;335(2):184–188. doi: 10.1016/0014-5793(93)80726-b. [DOI] [PubMed] [Google Scholar]
  64. Wagner P. G., Dekin M. S. cAMP modulates an S-type K+ channel coupled to GABAB receptors in mammalian respiratory neurons. Neuroreport. 1997 May 6;8(7):1667–1670. doi: 10.1097/00001756-199705060-00021. [DOI] [PubMed] [Google Scholar]
  65. Wu J. V., Rubinstein C. T., Shrager P. Single channel characterization of multiple types of potassium channels in demyelinated Xenopus axons. J Neurosci. 1993 Dec;13(12):5153–5163. doi: 10.1523/JNEUROSCI.13-12-05153.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yang J., Jan Y. N., Jan L. Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron. 1995 Dec;15(6):1441–1447. doi: 10.1016/0896-6273(95)90021-7. [DOI] [PubMed] [Google Scholar]
  67. Yool A. J., Schwarz T. L. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature. 1991 Feb 21;349(6311):700–704. doi: 10.1038/349700a0. [DOI] [PubMed] [Google Scholar]
  68. Yue D. T., Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch. 1988 Dec;413(2):127–133. doi: 10.1007/BF00582522. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES