Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 15;17(18):5309–5320. doi: 10.1093/emboj/17.18.5309

Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase.

G M Dingjan 1, A Maas 1, M C Nawijn 1, L Smit 1, J S Voerman 1, F Grosveld 1, R W Hendriks 1
PMCID: PMC1170858  PMID: 9736610

Abstract

To identify B-cell signaling pathways activated by Bruton's tyrosine kinase (Btk) in vivo, we generated transgenic mice in which Btk expression is driven by the MHC class II Ea gene locus control region. Btk overexpression did not have significant adverse effects on B cell function, and essentially corrected the X-linked immunodeficiency (xid) phenotype in Btk- mice. In contrast, expression of a constitutively activated form of Btk carrying the E41K gain-of-function mutation resulted in a B cell defect that was more severe than xid. The mice showed a marked reduction of the B cell compartment in spleen, lymph nodes, peripheral blood and peritoneal cavity. The levels in the serum of most immunoglobulin subclasses decreased with age, and B cell responses to both T cell-independent type II and T cell-dependent antigens were essentially absent. Expression of the E41K Btk mutant enhanced blast formation of splenic B cells in vitro in response to anti-IgM stimulation. Furthermore, the mice manifested a disorganization of B cell areas and marginal zones in the spleen. Our findings demonstrate that expression of constitutively activated Btk blocks the development of follicular recirculating B cells.

Full Text

The Full Text of this article is available as a PDF (873.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allman D. M., Ferguson S. E., Cancro M. P. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol. 1992 Oct 15;149(8):2533–2540. [PubMed] [Google Scholar]
  2. Allman D. M., Ferguson S. E., Lentz V. M., Cancro M. P. Peripheral B cell maturation. II. Heat-stable antigen(hi) splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol. 1993 Nov 1;151(9):4431–4444. [PubMed] [Google Scholar]
  3. Anderson J. S., Teutsch M., Dong Z., Wortis H. H. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10966–10971. doi: 10.1073/pnas.93.20.10966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aoki Y., Isselbacher K. J., Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10606–10609. doi: 10.1073/pnas.91.22.10606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bence K., Ma W., Kozasa T., Huang X. Y. Direct stimulation of Bruton's tyrosine kinase by G(q)-protein alpha-subunit. Nature. 1997 Sep 18;389(6648):296–299. doi: 10.1038/38520. [DOI] [PubMed] [Google Scholar]
  6. Caamaño J. H., Rizzo C. A., Durham S. K., Barton D. S., Raventós-Suárez C., Snapper C. M., Bravo R. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med. 1998 Jan 19;187(2):185–196. doi: 10.1084/jem.187.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson S., Wiles M. V. Far upstream regions of class II MHC Ea are necessary for position-independent, copy-dependent expression of Ea transgene. Nucleic Acids Res. 1993 May 11;21(9):2065–2072. doi: 10.1093/nar/21.9.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook M. C., Basten A., Fazekas de St Groth B. Outer periarteriolar lymphoid sheath arrest and subsequent differentiation of both naive and tolerant immunoglobulin transgenic B cells is determined by B cell receptor occupancy. J Exp Med. 1997 Aug 29;186(5):631–643. doi: 10.1084/jem.186.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Jong J. P., Voerman J. S., Leenen P. J., Van der Sluijs-Gelling A. J., Ploemacher R. E. Improved fixation of frozen lympho-haemopoietic tissue sections with hexazotized pararosaniline. Histochem J. 1991 Sep;23(9):392–401. doi: 10.1007/BF01042295. [DOI] [PubMed] [Google Scholar]
  10. De Weers M., Dingjan G. M., Brouns G. S., Kraakman M. E., Mensink R. G., Lovering R. C., Schuurman R. K., Borst J., Hendriks R. W. Expression of Bruton's tyrosine kinase in B lymphoblastoid cell lines from X-linked agammaglobulinaemia patients. Clin Exp Immunol. 1997 Feb;107(2):235–240. doi: 10.1111/j.1365-2249.1997.296-ce1185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Desiderio S. Role of Btk in B cell development and signaling. Curr Opin Immunol. 1997 Aug;9(4):534–540. doi: 10.1016/s0952-7915(97)80107-0. [DOI] [PubMed] [Google Scholar]
  12. Drabek D., Raguz S., De Wit T. P., Dingjan G. M., Savelkoul H. F., Grosveld F., Hendriks R. W. Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):610–615. doi: 10.1073/pnas.94.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franzoso G., Carlson L., Poljak L., Shores E. W., Epstein S., Leonardi A., Grinberg A., Tran T., Scharton-Kersten T., Anver M. Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med. 1998 Jan 19;187(2):147–159. doi: 10.1084/jem.187.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franzoso G., Carlson L., Scharton-Kersten T., Shores E. W., Epstein S., Grinberg A., Tran T., Shacter E., Leonardi A., Anver M. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions. Immunity. 1997 Apr;6(4):479–490. doi: 10.1016/s1074-7613(00)80291-5. [DOI] [PubMed] [Google Scholar]
  15. Fukuda M., Kojima T., Kabayama H., Mikoshiba K. Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J Biol Chem. 1996 Nov 29;271(48):30303–30306. doi: 10.1074/jbc.271.48.30303. [DOI] [PubMed] [Google Scholar]
  16. Fulcher D. A., Basten A. Influences on the lifespan of B cell subpopulations defined by different phenotypes. Eur J Immunol. 1997 May;27(5):1188–1199. doi: 10.1002/eji.1830270521. [DOI] [PubMed] [Google Scholar]
  17. Fulcher D. A., Basten A. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J Exp Med. 1994 Jan 1;179(1):125–134. doi: 10.1084/jem.179.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fulcher D. A., Lyons A. B., Korn S. L., Cook M. C., Koleda C., Parish C., Fazekas de St Groth B., Basten A. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J Exp Med. 1996 May 1;183(5):2313–2328. doi: 10.1084/jem.183.5.2313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goodnow C. C., Cyster J. G., Hartley S. B., Bell S. E., Cooke M. P., Healy J. I., Akkaraju S., Rathmell J. C., Pogue S. L., Shokat K. P. Self-tolerance checkpoints in B lymphocyte development. Adv Immunol. 1995;59:279–368. doi: 10.1016/s0065-2776(08)60633-1. [DOI] [PubMed] [Google Scholar]
  20. Gu H., Tarlinton D., Müller W., Rajewsky K., Förster I. Most peripheral B cells in mice are ligand selected. J Exp Med. 1991 Jun 1;173(6):1357–1371. doi: 10.1084/jem.173.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hardy R. R., Carmack C. E., Shinton S. A., Kemp J. D., Hayakawa K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med. 1991 May 1;173(5):1213–1225. doi: 10.1084/jem.173.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hardy R. R., Hayakawa K., Haaijman J., Herzenberg L. A. B-cell subpopulations identified by two-colour fluorescence analysis. Nature. 1982 Jun 17;297(5867):589–591. doi: 10.1038/297589a0. [DOI] [PubMed] [Google Scholar]
  23. Hendriks R. W., de Bruijn M. F., Maas A., Dingjan G. M., Karis A., Grosveld F. Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage. EMBO J. 1996 Sep 16;15(18):4862–4872. [PMC free article] [PubMed] [Google Scholar]
  24. Hyvönen M., Saraste M. Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J. 1997 Jun 16;16(12):3396–3404. doi: 10.1093/emboj/16.12.3396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kerner J. D., Appleby M. W., Mohr R. N., Chien S., Rawlings D. J., Maliszewski C. R., Witte O. N., Perlmutter R. M. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity. 1995 Sep;3(3):301–312. doi: 10.1016/1074-7613(95)90115-9. [DOI] [PubMed] [Google Scholar]
  26. Khan W. N., Alt F. W., Gerstein R. M., Malynn B. A., Larsson I., Rathbun G., Davidson L., Müller S., Kantor A. B., Herzenberg L. A. Defective B cell development and function in Btk-deficient mice. Immunity. 1995 Sep;3(3):283–299. doi: 10.1016/1074-7613(95)90114-0. [DOI] [PubMed] [Google Scholar]
  27. Kraal G. Cells in the marginal zone of the spleen. Int Rev Cytol. 1992;132:31–74. doi: 10.1016/s0074-7696(08)62453-5. [DOI] [PubMed] [Google Scholar]
  28. Kumararatne D. S., MacLennan I. C. Cells of the marginal zone of the spleen are lymphocytes derived from recirculating precursors. Eur J Immunol. 1981 Nov;11(11):865–869. doi: 10.1002/eji.1830111104. [DOI] [PubMed] [Google Scholar]
  29. Leenen P. J., Radosević K., Voerman J. S., Salomon B., van Rooijen N., Klatzmann D., van Ewijk W. Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J Immunol. 1998 Mar 1;160(5):2166–2173. [PubMed] [Google Scholar]
  30. Lemmon M. A., Ferguson K. M., Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996 May 31;85(5):621–624. doi: 10.1016/s0092-8674(00)81022-3. [DOI] [PubMed] [Google Scholar]
  31. Li T., Tsukada S., Satterthwaite A., Havlik M. H., Park H., Takatsu K., Witte O. N. Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity. 1995 May;2(5):451–460. doi: 10.1016/1074-7613(95)90026-8. [DOI] [PubMed] [Google Scholar]
  32. Li Z., Wahl M. I., Eguinoa A., Stephens L. R., Hawkins P. T., Witte O. N. Phosphatidylinositol 3-kinase-gamma activates Bruton's tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13820–13825. doi: 10.1073/pnas.94.25.13820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lund T., Grosveld F. G., Flavell R. A. Isolation of transforming DNA by cosmid rescue. Proc Natl Acad Sci U S A. 1982 Jan;79(2):520–524. doi: 10.1073/pnas.79.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maas A., Dingjan G. M., Savelkoul H. F., Kinnon C., Grosveld F., Hendriks R. W. The X-linked immunodeficiency defect in the mouse is corrected by expression of human Bruton's tyrosine kinase from a yeast artificial chromosome transgene. Eur J Immunol. 1997 Sep;27(9):2180–2187. doi: 10.1002/eji.1830270910. [DOI] [PubMed] [Google Scholar]
  35. Mason D. Y., Jones M., Goodnow C. C. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int Immunol. 1992 Feb;4(2):163–175. doi: 10.1093/intimm/4.2.163. [DOI] [PubMed] [Google Scholar]
  36. Matsumoto M., Fu Y. X., Molina H., Chaplin D. D. Lymphotoxin-alpha-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol Rev. 1997 Apr;156:137–144. doi: 10.1111/j.1600-065x.1997.tb00965.x. [DOI] [PubMed] [Google Scholar]
  37. Mattsson P. T., Vihinen M., Smith C. I. X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Bioessays. 1996 Oct;18(10):825–834. doi: 10.1002/bies.950181009. [DOI] [PubMed] [Google Scholar]
  38. Melamed D., Benschop R. J., Cambier J. C., Nemazee D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell. 1998 Jan 23;92(2):173–182. doi: 10.1016/s0092-8674(00)80912-5. [DOI] [PubMed] [Google Scholar]
  39. Oeltjen J. C., Malley T. M., Muzny D. M., Miller W., Gibbs R. A., Belmont J. W. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res. 1997 Apr;7(4):315–329. doi: 10.1101/gr.7.4.315. [DOI] [PubMed] [Google Scholar]
  40. Park H., Wahl M. I., Afar D. E., Turck C. W., Rawlings D. J., Tam C., Scharenberg A. M., Kinet J. P., Witte O. N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity. 1996 May;4(5):515–525. doi: 10.1016/s1074-7613(00)80417-3. [DOI] [PubMed] [Google Scholar]
  41. Rathmell J. C., Townsend S. E., Xu J. C., Flavell R. A., Goodnow C. C. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell. 1996 Oct 18;87(2):319–329. doi: 10.1016/s0092-8674(00)81349-5. [DOI] [PubMed] [Google Scholar]
  42. Rawlings D. J., Saffran D. C., Tsukada S., Largaespada D. A., Grimaldi J. C., Cohen L., Mohr R. N., Bazan J. F., Howard M., Copeland N. G. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science. 1993 Jul 16;261(5119):358–361. doi: 10.1126/science.8332901. [DOI] [PubMed] [Google Scholar]
  43. Rawlings D. J., Scharenberg A. M., Park H., Wahl M. I., Lin S., Kato R. M., Fluckiger A. C., Witte O. N., Kinet J. P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996 Feb 9;271(5250):822–825. doi: 10.1126/science.271.5250.822. [DOI] [PubMed] [Google Scholar]
  44. Ridderstad A., Nossal G. J., Tarlinton D. M. The xid mutation diminishes memory B cell generation but does not affect somatic hypermutation and selection. J Immunol. 1996 Oct 15;157(8):3357–3365. [PubMed] [Google Scholar]
  45. Salim K., Bottomley M. J., Querfurth E., Zvelebil M. J., Gout I., Scaife R., Margolis R. L., Gigg R., Smith C. I., Driscoll P. C. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 1996 Nov 15;15(22):6241–6250. [PMC free article] [PubMed] [Google Scholar]
  46. Saouaf S. J., Mahajan S., Rowley R. B., Kut S. A., Fargnoli J., Burkhardt A. L., Tsukada S., Witte O. N., Bolen J. B. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9524–9528. doi: 10.1073/pnas.91.20.9524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sideras P., Smith C. I. Molecular and cellular aspects of X-linked agammaglobulinemia. Adv Immunol. 1995;59:135–223. doi: 10.1016/s0065-2776(08)60631-8. [DOI] [PubMed] [Google Scholar]
  48. Steinman R. M., Pack M., Inaba K. Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev. 1997 Apr;156:25–37. doi: 10.1111/j.1600-065x.1997.tb00956.x. [DOI] [PubMed] [Google Scholar]
  49. Tedder T. F., Inaoki M., Sato S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997 Feb;6(2):107–118. doi: 10.1016/s1074-7613(00)80418-5. [DOI] [PubMed] [Google Scholar]
  50. Thomas J. D., Sideras P., Smith C. I., Vorechovský I., Chapman V., Paul W. E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993 Jul 16;261(5119):355–358. doi: 10.1126/science.8332900. [DOI] [PubMed] [Google Scholar]
  51. Torres R. M., Flaswinkel H., Reth M., Rajewsky K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science. 1996 Jun 21;272(5269):1804–1808. doi: 10.1126/science.272.5269.1804. [DOI] [PubMed] [Google Scholar]
  52. Tsukada S., Saffran D. C., Rawlings D. J., Parolini O., Allen R. C., Klisak I., Sparkes R. S., Kubagawa H., Mohandas T., Quan S. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993 Jan 29;72(2):279–290. doi: 10.1016/0092-8674(93)90667-f. [DOI] [PubMed] [Google Scholar]
  53. Tsukada S., Simon M. I., Witte O. N., Katz A. Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11256–11260. doi: 10.1073/pnas.91.23.11256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Turner M., Gulbranson-Judge A., Quinn M. E., Walters A. E., MacLennan I. C., Tybulewicz V. L. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J Exp Med. 1997 Dec 15;186(12):2013–2021. doi: 10.1084/jem.186.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Van Vliet E., Melis M., Foidart J. M., Van Ewijk W. Reticular fibroblasts in peripheral lymphoid organs identified by a monoclonal antibody. J Histochem Cytochem. 1986 Jul;34(7):883–890. doi: 10.1177/34.7.3519751. [DOI] [PubMed] [Google Scholar]
  56. Vetrie D., Vorechovský I., Sideras P., Holland J., Davies A., Flinter F., Hammarström L., Kinnon C., Levinsky R., Bobrow M. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233. doi: 10.1038/361226a0. [DOI] [PubMed] [Google Scholar]
  57. Vihinen M., Brandau O., Brandén L. J., Kwan S. P., Lappalainen I., Lester T., Noordzij J. G., Ochs H. D., Ollila J., Pienaar S. M. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res. 1998 Jan 1;26(1):242–247. doi: 10.1093/nar/26.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wahl M. I., Fluckiger A. C., Kato R. M., Park H., Witte O. N., Rawlings D. J. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11526–11533. doi: 10.1073/pnas.94.21.11526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wicker L. S., Scher I. X-linked immune deficiency (xid) of CBA/N mice. Curr Top Microbiol Immunol. 1986;124:87–101. doi: 10.1007/978-3-642-70986-9_6. [DOI] [PubMed] [Google Scholar]
  60. Yao L., Kawakami Y., Kawakami T. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9175–9179. doi: 10.1073/pnas.91.19.9175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. de Weers M., Brouns G. S., Hinshelwood S., Kinnon C., Schuurman R. K., Hendriks R. W., Borst J. B-cell antigen receptor stimulation activates the human Bruton's tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem. 1994 Sep 30;269(39):23857–23860. [PubMed] [Google Scholar]
  62. de Weers M., Mensink R. G., Kraakman M. E., Schuurman R. K., Hendriks R. W. Mutation analysis of the Bruton's tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum Mol Genet. 1994 Jan;3(1):161–166. doi: 10.1093/hmg/3.1.161. [DOI] [PubMed] [Google Scholar]
  63. de Weers M., Verschuren M. C., Kraakman M. E., Mensink R. G., Schuurman R. K., van Dongen J. J., Hendriks R. W. The Bruton's tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages. Eur J Immunol. 1993 Dec;23(12):3109–3114. doi: 10.1002/eji.1830231210. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES