Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 15;17(18):5321–5333. doi: 10.1093/emboj/17.18.5321

Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes.

J Schwaller 1, J Frantsve 1, J Aster 1, I R Williams 1, M H Tomasson 1, T S Ross 1, P Peeters 1, L Van Rompaey 1, R A Van Etten 1, R Ilaria Jr 1, P Marynen 1, D G Gilliland 1
PMCID: PMC1170859  PMID: 9736611

Abstract

Recent reports have demonstrated fusion of the TEL gene on 12p13 to the JAK2 gene on 9p24 in human leukemias. Three variants have been identified that fuse the TEL pointed (PNT) domain to (i) the JAK2 JH1-kinase domain, (ii) part of and (iii) all of the JH2 pseudokinase domain. We report that all of the human TEL/JAK2 variants, and a human/mouse chimeric hTEL/mJAK2(JH1) fusion gene, transform the interleukin-3 (IL-3)-dependent murine hematopoietic cell line Ba/F3 to IL-3-independent growth. Transformation requires both the TEL PNT domain and JAK2 kinase activity. Furthermore, all TEL/JAK2 variants strongly activated STAT 5 by phosphotyrosine Western blots and by electrophoretic mobility shift assays (EMSA). Mice (n = 40) transplanted with bone marrow infected with the MSCV retrovirus containing either the hTEL/mJAK2(JH1) fusion or its human counterpart developed a fatal mixed myeloproliferative and T-cell lymphoproliferative disorder with a latency of 2-10 weeks. In contrast, mice transplanted with a TEL/JAK2 mutant lacking the TEL PNT domain (n = 10) or a kinase-inactive TEL/JAK2(JH1) mutant (n = 10) did not develop the disease. We conclude that all human TEL/JAK2 fusion variants are oncoproteins in vitro that strongly activate STAT 5, and cause lethal myelo- and lymphoproliferative syndromes in murine bone marrow transplant models of leukemia.

Full Text

The Full Text of this article is available as a PDF (720.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azam M., Lee C., Strehlow I., Schindler C. Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity. 1997 Jun;6(6):691–701. doi: 10.1016/s1074-7613(00)80445-8. [DOI] [PubMed] [Google Scholar]
  2. Boccaccio C., Andò M., Tamagnone L., Bardelli A., Michieli P., Battistini C., Comoglio P. M. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998 Jan 15;391(6664):285–288. doi: 10.1038/34657. [DOI] [PubMed] [Google Scholar]
  3. Buijs A., Sherr S., van Baal S., van Bezouw S., van der Plas D., Geurts van Kessel A., Riegman P., Lekanne Deprez R., Zwarthoff E., Hagemeijer A. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene. 1995 Apr 20;10(8):1511–1519. [PubMed] [Google Scholar]
  4. Carlesso N., Frank D. A., Griffin J. D. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med. 1996 Mar 1;183(3):811–820. doi: 10.1084/jem.183.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll M., Tomasson M. H., Barker G. F., Golub T. R., Gilliland D. G. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14845–14850. doi: 10.1073/pnas.93.25.14845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chai S. K., Nichols G. L., Rothman P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol. 1997 Nov 15;159(10):4720–4728. [PubMed] [Google Scholar]
  7. Chang J. M., Metcalf D., Gonda T. J., Johnson G. R. Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest. 1989 Nov;84(5):1488–1496. doi: 10.1172/JCI114324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang J. M., Metcalf D., Lang R. A., Gonda T. J., Johnson G. R. Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood. 1989 May 1;73(6):1487–1497. [PubMed] [Google Scholar]
  9. Cortez D., Kadlec L., Pendergast A. M. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995 Oct;15(10):5531–5541. doi: 10.1128/mcb.15.10.5531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cortez D., Stoica G., Pierce J. H., Pendergast A. M. The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene. 1996 Dec 19;13(12):2589–2594. [PubMed] [Google Scholar]
  11. Dalal I., Arpaia E., Dadi H., Kulkarni S., Squire J., Roifman C. M. Cloning and characterization of the human homolog of mouse Jak2. Blood. 1998 Feb 1;91(3):844–851. [PubMed] [Google Scholar]
  12. Daley G. Q., Van Etten R. A., Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990 Feb 16;247(4944):824–830. doi: 10.1126/science.2406902. [DOI] [PubMed] [Google Scholar]
  13. Danial N. N., Pernis A., Rothman P. B. Jak-STAT signaling induced by the v-abl oncogene. Science. 1995 Sep 29;269(5232):1875–1877. doi: 10.1126/science.7569929. [DOI] [PubMed] [Google Scholar]
  14. Darnell J. E., Jr STATs and gene regulation. Science. 1997 Sep 12;277(5332):1630–1635. doi: 10.1126/science.277.5332.1630. [DOI] [PubMed] [Google Scholar]
  15. Elefanty A. G., Cory S. Hematologic disease induced in BALB/c mice by a bcr-abl retrovirus is influenced by the infection conditions. Mol Cell Biol. 1992 Apr;12(4):1755–1763. doi: 10.1128/mcb.12.4.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Elefanty A. G., Hariharan I. K., Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990 Apr;9(4):1069–1078. doi: 10.1002/j.1460-2075.1990.tb08212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997 Jun 26;387(6636):921–924. doi: 10.1038/43213. [DOI] [PubMed] [Google Scholar]
  18. Finer M. H., Dull T. J., Qin L., Farson D., Roberts M. R. kat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood. 1994 Jan 1;83(1):43–50. [PubMed] [Google Scholar]
  19. Frank D. A., Mahajan S., Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest. 1997 Dec 15;100(12):3140–3148. doi: 10.1172/JCI119869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gilmour K. C., Pine R., Reich N. C. Interleukin 2 activates STAT5 transcription factor (mammary gland factor) and specific gene expression in T lymphocytes. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10772–10776. doi: 10.1073/pnas.92.23.10772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gishizky M. L., Johnson-White J., Witte O. N. Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3755–3759. doi: 10.1073/pnas.90.8.3755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goga A., McLaughlin J., Afar D. E., Saffran D. C., Witte O. N. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell. 1995 Sep 22;82(6):981–988. doi: 10.1016/0092-8674(95)90277-5. [DOI] [PubMed] [Google Scholar]
  23. Golub T. R., Barker G. F., Bohlander S. K., Hiebert S. W., Ward D. C., Bray-Ward P., Morgan E., Raimondi S. C., Rowley J. D., Gilliland D. G. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4917–4921. doi: 10.1073/pnas.92.11.4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Golub T. R., Barker G. F., Lovett M., Gilliland D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994 Apr 22;77(2):307–316. doi: 10.1016/0092-8674(94)90322-0. [DOI] [PubMed] [Google Scholar]
  25. Golub T. R., Goga A., Barker G. F., Afar D. E., McLaughlin J., Bohlander S. K., Rowley J. D., Witte O. N., Gilliland D. G. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol. 1996 Aug;16(8):4107–4116. doi: 10.1128/mcb.16.8.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gouilleux-Gruart V., Gouilleux F., Desaint C., Claisse J. F., Capiod J. C., Delobel J., Weber-Nordt R., Dusanter-Fourt I., Dreyfus F., Groner B. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood. 1996 Mar 1;87(5):1692–1697. [PubMed] [Google Scholar]
  27. Gurtu V., Yan G., Zhang G. IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun. 1996 Dec 4;229(1):295–298. doi: 10.1006/bbrc.1996.1795. [DOI] [PubMed] [Google Scholar]
  28. Hanenberg H., Xiao X. L., Dilloo D., Hashino K., Kato I., Williams D. A. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med. 1996 Aug;2(8):876–882. doi: 10.1038/nm0896-876. [DOI] [PubMed] [Google Scholar]
  29. Hawley R. G., Fong A. Z., Burns B. F., Hawley T. S. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J Exp Med. 1992 Oct 1;176(4):1149–1163. doi: 10.1084/jem.176.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hawley R. G., Lieu F. H., Fong A. Z., Hawley T. S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1994 Mar;1(2):136–138. [PubMed] [Google Scholar]
  31. Hiebert S. W., Sun W., Davis J. N., Golub T., Shurtleff S., Buijs A., Downing J. R., Grosveld G., Roussell M. F., Gilliland D. G. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol. 1996 Apr;16(4):1349–1355. doi: 10.1128/mcb.16.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ihle J. N., Witthuhn B. A., Quelle F. W., Yamamoto K., Silvennoinen O. Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol. 1995;13:369–398. doi: 10.1146/annurev.iy.13.040195.002101. [DOI] [PubMed] [Google Scholar]
  33. Ilaria R. L., Jr, Van Etten R. A. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem. 1996 Dec 6;271(49):31704–31710. doi: 10.1074/jbc.271.49.31704. [DOI] [PubMed] [Google Scholar]
  34. Johnson G. R., Gonda T. J., Metcalf D., Hariharan I. K., Cory S. A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte-macrophage colony stimulating factor. EMBO J. 1989 Feb;8(2):441–448. doi: 10.1002/j.1460-2075.1989.tb03396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Johnston J. A., Bacon C. M., Finbloom D. S., Rees R. C., Kaplan D., Shibuya K., Ortaldo J. R., Gupta S., Chen Y. Q., Giri J. D. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8705–8709. doi: 10.1073/pnas.92.19.8705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jousset C., Carron C., Boureux A., Quang C. T., Oury C., Dusanter-Fourt I., Charon M., Levin J., Bernard O., Ghysdael J. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 1997 Jan 2;16(1):69–82. doi: 10.1093/emboj/16.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kim D. G., Kang H. M., Jang S. K., Shin H. S. Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol Cell Biol. 1992 Aug;12(8):3636–3643. doi: 10.1128/mcb.12.8.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kuefer M. U., Look A. T., Pulford K., Behm F. G., Pattengale P. K., Mason D. Y., Morris S. W. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood. 1997 Oct 15;90(8):2901–2910. [PubMed] [Google Scholar]
  39. Lacronique V., Boureux A., Valle V. D., Poirel H., Quang C. T., Mauchauffé M., Berthou C., Lessard M., Berger R., Ghysdael J. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997 Nov 14;278(5341):1309–1312. doi: 10.1126/science.278.5341.1309. [DOI] [PubMed] [Google Scholar]
  40. Lavau C., Szilvassy S. J., Slany R., Cleary M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997 Jul 16;16(14):4226–4237. doi: 10.1093/emboj/16.14.4226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Leaman D. W., Leung S., Li X., Stark G. R. Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 1996 Dec;10(14):1578–1588. [PubMed] [Google Scholar]
  42. Luo H., Hanratty W. P., Dearolf C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 1995 Apr 3;14(7):1412–1420. doi: 10.1002/j.1460-2075.1995.tb07127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Luo H., Rose P., Barber D., Hanratty W. P., Lee S., Roberts T. M., D'Andrea A. D., Dearolf C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol. 1997 Mar;17(3):1562–1571. doi: 10.1128/mcb.17.3.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. McWhirter J. R., Wang J. Y. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol. 1991 Mar;11(3):1553–1565. doi: 10.1128/mcb.11.3.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Meydan N., Grunberger T., Dadi H., Shahar M., Arpaia E., Lapidot Z., Leeder J. S., Freedman M., Cohen A., Gazit A. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996 Feb 15;379(6566):645–648. doi: 10.1038/379645a0. [DOI] [PubMed] [Google Scholar]
  46. Migone T. S., Lin J. X., Cereseto A., Mulloy J. C., O'Shea J. J., Franchini G., Leonard W. J. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science. 1995 Jul 7;269(5220):79–81. doi: 10.1126/science.7604283. [DOI] [PubMed] [Google Scholar]
  47. Mui A. L., Wakao H., Kinoshita T., Kitamura T., Miyajima A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 1996 May 15;15(10):2425–2433. [PMC free article] [PubMed] [Google Scholar]
  48. Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., Taga T., Yoshizaki K. Structure and function of a new STAT-induced STAT inhibitor. Nature. 1997 Jun 26;387(6636):924–929. doi: 10.1038/43219. [DOI] [PubMed] [Google Scholar]
  49. Nakamura N., Chin H., Miyasaka N., Miura O. An epidermal growth factor receptor/Jak2 tyrosine kinase domain chimera induces tyrosine phosphorylation of Stat5 and transduces a growth signal in hematopoietic cells. J Biol Chem. 1996 Aug 9;271(32):19483–19488. doi: 10.1074/jbc.271.32.19483. [DOI] [PubMed] [Google Scholar]
  50. Nelson B. H., Lord J. D., Greenberg P. D. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation. Nature. 1994 May 26;369(6478):333–336. doi: 10.1038/369333a0. [DOI] [PubMed] [Google Scholar]
  51. Nielsen M., Kaltoft K., Nordahl M., Röpke C., Geisler C., Mustelin T., Dobson P., Svejgaard A., Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6764–6769. doi: 10.1073/pnas.94.13.6764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Papadopoulos P., Ridge S. A., Boucher C. A., Stocking C., Wiedemann L. M. The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res. 1995 Jan 1;55(1):34–38. [PubMed] [Google Scholar]
  53. Park L. S., Friend D. J., Schmierer A. E., Dower S. K., Namen A. E. Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line. J Exp Med. 1990 Apr 1;171(4):1073–1089. doi: 10.1084/jem.171.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Peeters P., Raynaud S. D., Cools J., Wlodarska I., Grosgeorge J., Philip P., Monpoux F., Van Rompaey L., Baens M., Van den Berghe H. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997 Oct 1;90(7):2535–2540. [PubMed] [Google Scholar]
  55. Peeters P., Wlodarska I., Baens M., Criel A., Selleslag D., Hagemeijer A., Van den Berghe H., Marynen P. Fusion of ETV6 to MDS1/EVI1 as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer Res. 1997 Feb 15;57(4):564–569. [PubMed] [Google Scholar]
  56. Persons D. A., Allay J. A., Allay E. R., Smeyne R. J., Ashmun R. A., Sorrentino B. P., Nienhuis A. W. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 1997 Sep 1;90(5):1777–1786. [PubMed] [Google Scholar]
  57. Poirel H., Oury C., Carron C., Duprez E., Laabi Y., Tsapis A., Romana S. P., Mauchauffe M., Le Coniat M., Berger R. The TEL gene products: nuclear phosphoproteins with DNA binding properties. Oncogene. 1997 Jan 23;14(3):349–357. doi: 10.1038/sj.onc.1200829. [DOI] [PubMed] [Google Scholar]
  58. Rao V. N., Ohno T., Prasad D. D., Bhattacharya G., Reddy E. S. Analysis of the DNA-binding and transcriptional activation functions of human Fli-1 protein. Oncogene. 1993 Aug;8(8):2167–2173. [PubMed] [Google Scholar]
  59. Rodrigues G. A., Park M. Oncogenic activation of tyrosine kinases. Curr Opin Genet Dev. 1994 Feb;4(1):15–24. doi: 10.1016/0959-437x(94)90086-8. [DOI] [PubMed] [Google Scholar]
  60. Ross T. S., Bernard O. A., Berger R., Gilliland D. G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood. 1998 Jun 15;91(12):4419–4426. [PubMed] [Google Scholar]
  61. Sakai I., Kraft A. S. The kinase domain of Jak2 mediates induction of bcl-2 and delays cell death in hematopoietic cells. J Biol Chem. 1997 May 9;272(19):12350–12358. doi: 10.1074/jbc.272.19.12350. [DOI] [PubMed] [Google Scholar]
  62. Sakai I., Nabell L., Kraft A. S. Signal transduction by a CD16/CD7/Jak2 fusion protein. J Biol Chem. 1995 Aug 4;270(31):18420–18427. doi: 10.1074/jbc.270.31.18420. [DOI] [PubMed] [Google Scholar]
  63. Shuai K., Halpern J., ten Hoeve J., Rao X., Sawyers C. L. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene. 1996 Jul 18;13(2):247–254. [PubMed] [Google Scholar]
  64. Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8429–8433. doi: 10.1073/pnas.90.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Skorski T., Bellacosa A., Nieborowska-Skorska M., Majewski M., Martinez R., Choi J. K., Trotta R., Wlodarski P., Perrotti D., Chan T. O. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 1997 Oct 15;16(20):6151–6161. doi: 10.1093/emboj/16.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Starr R., Willson T. A., Viney E. M., Murray L. J., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A. A family of cytokine-inducible inhibitors of signalling. Nature. 1997 Jun 26;387(6636):917–921. doi: 10.1038/43206. [DOI] [PubMed] [Google Scholar]
  67. Wang D., Stravopodis D., Teglund S., Kitazawa J., Ihle J. N. Naturally occurring dominant negative variants of Stat5. Mol Cell Biol. 1996 Nov;16(11):6141–6148. doi: 10.1128/mcb.16.11.6141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wasylyk B., Hahn S. L., Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. doi: 10.1007/978-3-642-78757-7_2. [DOI] [PubMed] [Google Scholar]
  69. Watanabe S., Arai K. i. Roles of the JAK-STAT system in signal transduction via cytokine receptors. Curr Opin Genet Dev. 1996 Oct;6(5):587–596. doi: 10.1016/s0959-437x(96)80088-8. [DOI] [PubMed] [Google Scholar]
  70. Xiao S., Nalabolu S. R., Aster J. C., Ma J., Abruzzo L., Jaffe E. S., Stone R., Weissman S. M., Hudson T. J., Fletcher J. A. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet. 1998 Jan;18(1):84–87. doi: 10.1038/ng0198-84. [DOI] [PubMed] [Google Scholar]
  71. Xu X., Kang S. H., Heidenreich O., Okerholm M., O'Shea J. J., Nerenberg M. I. Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virus-transformed cells. J Clin Invest. 1995 Sep;96(3):1548–1555. doi: 10.1172/JCI118193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zhang Q., Nowak I., Vonderheid E. C., Rook A. H., Kadin M. E., Nowell P. C., Shaw L. M., Wasik M. A. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9148–9153. doi: 10.1073/pnas.93.17.9148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Zhuang H., Patel S. V., He T. C., Sonsteby S. K., Niu Z., Wojchowski D. M. Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J Biol Chem. 1994 Aug 26;269(34):21411–21414. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES