Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Oct 1;17(19):5638–5646. doi: 10.1093/emboj/17.19.5638

Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Galpha12/13.

J Mao 1, W Xie 1, H Yuan 1, M I Simon 1, H Mano 1, D Wu 1
PMCID: PMC1170892  PMID: 9755164

Abstract

A transient transfection system was used to identify regulators and effectors for Tec and Bmx, members of the Tec non-receptor tyrosine kinase family. We found that Tec and Bmx activate serum response factor (SRF), in synergy with constitutively active alpha subunits of the G12 family of GTP-binding proteins, in transiently transfected NIH 3T3 cells. The SRF activation is sensitive to C3, suggesting the involvement of Rho. The kinase and Tec homology (TH) domains of the kinases are required for SRF activation. In addition, kinase-deficient mutants of Bmx are able to inhibit Galpha13- and Galpha12-induced SRF activation, and to suppress thrombin-induced SRF activation in cells lacking Galphaq/11, where thrombin's effect is mediated by G12/13 proteins. Moreover, expression of Galpha12 and Galpha13 stimulates autophosphorylation and transphosphorylation activities of Tec. Thus, the evidence indicates that Tec kinases are involved in Galpha12/13-induced, Rho-mediated activation of SRF. Furthermore, Src, which was previously shown to activate kinase activities of Tec kinases, activates SRF predominantly in Rho-independent pathways in 3T3 cells, as shown by the fact that C3 did not block Src-mediated SRF activation. However, the Rho-dependent pathway becomes significant when Tec is overexpressed.

Full Text

The Full Text of this article is available as a PDF (361.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bence K., Ma W., Kozasa T., Huang X. Y. Direct stimulation of Bruton's tyrosine kinase by G(q)-protein alpha-subunit. Nature. 1997 Sep 18;389(6648):296–299. doi: 10.1038/38520. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
  3. Buhl A. M., Johnson N. L., Dhanasekaran N., Johnson G. L. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995 Oct 20;270(42):24631–24634. doi: 10.1074/jbc.270.42.24631. [DOI] [PubMed] [Google Scholar]
  4. Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
  5. Fleming I. N., Elliott C. M., Exton J. H. Differential translocation of rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J Biol Chem. 1996 Dec 20;271(51):33067–33073. doi: 10.1074/jbc.271.51.33067. [DOI] [PubMed] [Google Scholar]
  6. Fromm C., Coso O. A., Montaner S., Xu N., Gutkind J. S. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10098–10103. doi: 10.1073/pnas.94.19.10098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gebbink M. F., Kranenburg O., Poland M., van Horck F. P., Houssa B., Moolenaar W. H. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol. 1997 Jun 30;137(7):1603–1613. doi: 10.1083/jcb.137.7.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  9. Glaven J. A., Whitehead I. P., Nomanbhoy T., Kay R., Cerione R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem. 1996 Nov 1;271(44):27374–27381. doi: 10.1074/jbc.271.44.27374. [DOI] [PubMed] [Google Scholar]
  10. Gohla A., Harhammer R., Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem. 1998 Feb 20;273(8):4653–4659. doi: 10.1074/jbc.273.8.4653. [DOI] [PubMed] [Google Scholar]
  11. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  12. Hamazaki Y., Kojima H., Mano H., Nagata Y., Todokoro K., Abe T., Nagasawa T. Tec is involved in G protein-coupled receptor- and integrin-mediated signalings in human blood platelets. Oncogene. 1998 May 28;16(21):2773–2779. doi: 10.1038/sj.onc.1201799. [DOI] [PubMed] [Google Scholar]
  13. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  14. Jiang H., Wu D., Simon M. I. The transforming activity of activated G alpha 12. FEBS Lett. 1993 Sep 20;330(3):319–322. doi: 10.1016/0014-5793(93)80896-3. [DOI] [PubMed] [Google Scholar]
  15. Karnam P., Standaert M. L., Galloway L., Farese R. V. Activation and translocation of Rho (and ADP ribosylation factor) by insulin in rat adipocytes. Apparent involvement of phosphatidylinositol 3-kinase. J Biol Chem. 1997 Mar 7;272(10):6136–6140. doi: 10.1074/jbc.272.10.6136. [DOI] [PubMed] [Google Scholar]
  16. Kawakami Y., Miura T., Bissonnette R., Hata D., Khan W. N., Kitamura T., Maeda-Yamamoto M., Hartman S. E., Yao L., Alt F. W. Bruton's tyrosine kinase regulates apoptosis and JNK/SAPK kinase activity. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3938–3942. doi: 10.1073/pnas.94.8.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langhans-Rajasekaran S. A., Wan Y., Huang X. Y. Activation of Tsk and Btk tyrosine kinases by G protein beta gamma subunits. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8601–8605. doi: 10.1073/pnas.92.19.8601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li T., Tsukada S., Satterthwaite A., Havlik M. H., Park H., Takatsu K., Witte O. N. Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity. 1995 May;2(5):451–460. doi: 10.1016/1074-7613(95)90026-8. [DOI] [PubMed] [Google Scholar]
  19. Li Z., Wahl M. I., Eguinoa A., Stephens L. R., Hawkins P. T., Witte O. N. Phosphatidylinositol 3-kinase-gamma activates Bruton's tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13820–13825. doi: 10.1073/pnas.94.25.13820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Machide M., Mano H., Todokoro K. Interleukin 3 and erythropoietin induce association of Vav with Tec kinase through Tec homology domain. Oncogene. 1995 Aug 17;11(4):619–625. [PubMed] [Google Scholar]
  21. Mano H., Yamashita Y., Miyazato A., Miura Y., Ozawa K. Tec protein-tyrosine kinase is an effector molecule of Lyn protein-tyrosine kinase. FASEB J. 1996 Apr;10(5):637–642. doi: 10.1096/fasebj.10.5.8621063. [DOI] [PubMed] [Google Scholar]
  22. Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
  23. Miyazato A., Yamashita Y., Hatake K., Miura Y., Ozawa K., Mano H. Tec protein tyrosine kinase is involved in the signaling mechanism of granulocyte colony-stimulating factor receptor. Cell Growth Differ. 1996 Sep;7(9):1135–1139. [PubMed] [Google Scholar]
  24. Neet K., Hunter T. Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells. 1996 Feb;1(2):147–169. doi: 10.1046/j.1365-2443.1996.d01-234.x. [DOI] [PubMed] [Google Scholar]
  25. Offermanns S., Laugwitz K. L., Spicher K., Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):504–508. doi: 10.1073/pnas.91.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Offermanns S., Mancino V., Revel J. P., Simon M. I. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science. 1997 Jan 24;275(5299):533–536. doi: 10.1126/science.275.5299.533. [DOI] [PubMed] [Google Scholar]
  27. Park H., Wahl M. I., Afar D. E., Turck C. W., Rawlings D. J., Tam C., Scharenberg A. M., Kinet J. P., Witte O. N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity. 1996 May;4(5):515–525. doi: 10.1016/s1074-7613(00)80417-3. [DOI] [PubMed] [Google Scholar]
  28. Rawlings D. J., Scharenberg A. M., Park H., Wahl M. I., Lin S., Kato R. M., Fluckiger A. C., Witte O. N., Kinet J. P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996 Feb 9;271(5250):822–825. doi: 10.1126/science.271.5250.822. [DOI] [PubMed] [Google Scholar]
  29. Rawlings D. J., Witte O. N. The Btk subfamily of cytoplasmic tyrosine kinases: structure, regulation and function. Semin Immunol. 1995 Aug;7(4):237–246. doi: 10.1006/smim.1995.0028. [DOI] [PubMed] [Google Scholar]
  30. Tamagnone L., Lahtinen I., Mustonen T., Virtaneva K., Francis F., Muscatelli F., Alitalo R., Smith C. I., Larsson C., Alitalo K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene. 1994 Dec;9(12):3683–3688. [PubMed] [Google Scholar]
  31. Toksoz D., Williams D. A. Novel human oncogene lbc detected by transfection with distinct homology regions to signal transduction products. Oncogene. 1994 Feb;9(2):621–628. [PubMed] [Google Scholar]
  32. Voyno-Yasenetskaya T. A., Pace A. M., Bourne H. R. Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene. 1994 Sep;9(9):2559–2565. [PubMed] [Google Scholar]
  33. Wu D. Q., Lee C. H., Rhee S. G., Simon M. I. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem. 1992 Jan 25;267(3):1811–1817. [PubMed] [Google Scholar]
  34. Wu D., Katz A., Lee C. H., Simon M. I. Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. J Biol Chem. 1992 Dec 25;267(36):25798–25802. [PubMed] [Google Scholar]
  35. Wu D., Katz A., Simon M. I. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5297–5301. doi: 10.1073/pnas.90.11.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu N., Voyno-Yasenetskaya T., Gutkind J. S. Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun. 1994 Jun 15;201(2):603–609. doi: 10.1006/bbrc.1994.1744. [DOI] [PubMed] [Google Scholar]
  37. Yamashita Y., Miyazato A., Ohya K., Ikeda U., Shimada K., Miura Y., Ozawa K., Mano H. Deletion of Src homology 3 domain results in constitutive activation of Tec protein-tyrosine kinase. Jpn J Cancer Res. 1996 Nov;87(11):1106–1110. doi: 10.1111/j.1349-7006.1996.tb03118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES