Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Oct 15;17(20):5987–5997. doi: 10.1093/emboj/17.20.5987

A novel function of adenovirus E1A is required to overcome growth arrest by the CDK2 inhibitor p27(Kip1).

K Alevizopoulos 1, B Catarin 1, J Vlach 1, B Amati 1
PMCID: PMC1170925  PMID: 9774342

Abstract

We show here that the adenovirus E1A oncoprotein prevents growth arrest by the CDK2 inhibitor p27(Kip1) (p27) in rodent fibroblasts. However, E1A neither binds p27 nor prevents inhibition of CDK2 complexes in vivo. In contrast, the amount of free p27 available to inhibit cyclin E/CDK2 is increased in E1A-expressing cells, owing to reduced expression of cyclins D1 and D3. Moreover, E1A allows cell proliferation in the presence of supraphysiological p27 levels, while c-Myc, known to induce a cellular p27-inhibitory activity, is only effective against physiological p27 concentrations. E1A also bypasses G1 arrest by roscovitine, a chemical inhibitor of CDK2. Altogether, these findings imply that E1A can act downstream of p27 and CDK2. Retinoblastoma (pRb)-family proteins are known CDK substrates; as expected, association of E1A with these proteins (but not with p300/CBP) is required for E1A to prevent growth arrest by either p27 or the CDK4/6 inhibitor p16(INK4a). Bypassing CDK2 inhibition requires an additional function of E1A: the mutant E1A Delta26-35 does not overcome p27-induced arrest, while it binds pRb-family proteins, prevents p16-induced arrest, and alleviates pRb-mediated repression of E2F-1 transcriptional activity (although E1A Delta26-35 fails to restore expression of E2F-regulated genes in p27-arrested cells). We propose that besides the pRb family, E1A targets specific effector(s) of CDK2 in G1-S control.

Full Text

The Full Text of this article is available as a PDF (465.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alevizopoulos K., Vlach J., Hennecke S., Amati B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J. 1997 Sep 1;16(17):5322–5333. doi: 10.1093/emboj/16.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amati B., Alevizopoulos K., Vlach J. Myc and the cell cycle. Front Biosci. 1998 Feb 15;3:d250–d268. doi: 10.2741/a239. [DOI] [PubMed] [Google Scholar]
  3. Barbeau D., Charbonneau R., Whalen S. G., Bayley S. T., Branton P. E. Functional interactions within adenovirus E1A protein complexes. Oncogene. 1994 Feb;9(2):359–373. [PubMed] [Google Scholar]
  4. Beijersbergen R. L., Carlée L., Kerkhoven R. M., Bernards R. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev. 1995 Jun 1;9(11):1340–1353. doi: 10.1101/gad.9.11.1340. [DOI] [PubMed] [Google Scholar]
  5. Blain S. W., Montalvo E., Massagué J. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem. 1997 Oct 10;272(41):25863–25872. doi: 10.1074/jbc.272.41.25863. [DOI] [PubMed] [Google Scholar]
  6. DeGregori J., Leone G., Ohtani K., Miron A., Nevins J. R. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev. 1995 Dec 1;9(23):2873–2887. doi: 10.1101/gad.9.23.2873. [DOI] [PubMed] [Google Scholar]
  7. Dorsman J. C., Hagmeyer B. M., Veenstra J., Elfferich P., Nabben N., Zantema A., van der Eb A. J. The N-terminal region of the adenovirus type 5 E1A proteins can repress expression of cellular genes via two distinct but overlapping domains. J Virol. 1995 May;69(5):2962–2967. doi: 10.1128/jvi.69.5.2962-2967.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Du W., Vidal M., Xie J. E., Dyson N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev. 1996 May 15;10(10):1206–1218. doi: 10.1101/gad.10.10.1206. [DOI] [PubMed] [Google Scholar]
  9. Duronio R. J., Bonnette P. C., O'Farrell P. H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol. 1998 Jan;18(1):141–151. doi: 10.1128/mcb.18.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duronio R. J., Brook A., Dyson N., O'Farrell P. H. E2F-induced S phase requires cyclin E. Genes Dev. 1996 Oct 1;10(19):2505–2513. doi: 10.1101/gad.10.19.2505. [DOI] [PubMed] [Google Scholar]
  11. Duronio R. J., O'Farrell P. H. Developmental control of the G1 to S transition in Drosophila: cyclin Eis a limiting downstream target of E2F. Genes Dev. 1995 Jun 15;9(12):1456–1468. doi: 10.1101/gad.9.12.1456. [DOI] [PubMed] [Google Scholar]
  12. Duronio R. J., O'Farrell P. H., Xie J. E., Brook A., Dyson N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 1995 Jun 15;9(12):1445–1455. doi: 10.1101/gad.9.12.1445. [DOI] [PubMed] [Google Scholar]
  13. Dyson N., Harlow E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 1992;12:161–195. [PubMed] [Google Scholar]
  14. Eckner R. p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol Chem. 1996 Nov;377(11):685–688. [PubMed] [Google Scholar]
  15. Geng Y., Eaton E. N., Picón M., Roberts J. M., Lundberg A. S., Gifford A., Sardet C., Weinberg R. A. Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene. 1996 Mar 21;12(6):1173–1180. [PubMed] [Google Scholar]
  16. Guan K. L., Jenkins C. W., Li Y., Nichols M. A., Wu X., O'Keefe C. L., Matera A. G., Xiong Y. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 1994 Dec 15;8(24):2939–2952. doi: 10.1101/gad.8.24.2939. [DOI] [PubMed] [Google Scholar]
  17. Harper J. W., Elledge S. J. Cdk inhibitors in development and cancer. Curr Opin Genet Dev. 1996 Feb;6(1):56–64. doi: 10.1016/s0959-437x(96)90011-8. [DOI] [PubMed] [Google Scholar]
  18. Helin K. Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev. 1998 Feb;8(1):28–35. doi: 10.1016/s0959-437x(98)80058-0. [DOI] [PubMed] [Google Scholar]
  19. Herrera R. E., Sah V. P., Williams B. O., Mäkelä T. P., Weinberg R. A., Jacks T. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol. 1996 May;16(5):2402–2407. doi: 10.1128/mcb.16.5.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirai H., Roussel M. F., Kato J. Y., Ashmun R. A., Sherr C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol. 1995 May;15(5):2672–2681. doi: 10.1128/mcb.15.5.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hofmann F., Livingston D. M. Differential effects of cdk2 and cdk3 on the control of pRb and E2F function during G1 exit. Genes Dev. 1996 Apr 1;10(7):851–861. doi: 10.1101/gad.10.7.851. [DOI] [PubMed] [Google Scholar]
  22. Howe J. A., Bayley S. T. Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology. 1992 Jan;186(1):15–24. doi: 10.1016/0042-6822(92)90057-v. [DOI] [PubMed] [Google Scholar]
  23. Howe J. A., Mymryk J. S., Egan C., Branton P. E., Bayley S. T. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5883–5887. doi: 10.1073/pnas.87.15.5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hurford R. K., Jr, Cobrinik D., Lee M. H., Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 1997 Jun 1;11(11):1447–1463. doi: 10.1101/gad.11.11.1447. [DOI] [PubMed] [Google Scholar]
  25. Iavarone A., Massagué J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature. 1997 May 22;387(6631):417–422. doi: 10.1038/387417a0. [DOI] [PubMed] [Google Scholar]
  26. Jelsma T. N., Howe J. A., Evelegh C. M., Cunniff N. F., Skiadopoulos M. H., Floroff M. R., Denman J. E., Bayley S. T. Use of deletion and point mutants spanning the coding region of the adenovirus 5 E1A gene to define a domain that is essential for transcriptional activation. Virology. 1988 Apr;163(2):494–502. doi: 10.1016/0042-6822(88)90290-5. [DOI] [PubMed] [Google Scholar]
  27. Jelsma T. N., Howe J. A., Mymryk J. S., Evelegh C. M., Cunniff N. F., Bayley S. T. Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology. 1989 Jul;171(1):120–130. doi: 10.1016/0042-6822(89)90518-7. [DOI] [PubMed] [Google Scholar]
  28. Katayose Y., Kim M., Rakkar A. N., Li Z., Cowan K. H., Seth P. Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res. 1997 Dec 15;57(24):5441–5445. [PubMed] [Google Scholar]
  29. Kelly B. L., Wolfe K. G., Roberts J. M. Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2535–2540. doi: 10.1073/pnas.95.5.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koh J., Enders G. H., Dynlacht B. D., Harlow E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature. 1995 Jun 8;375(6531):506–510. doi: 10.1038/375506a0. [DOI] [PubMed] [Google Scholar]
  31. Kraus V. B., Inostroza J. A., Yeung K., Reinberg D., Nevins J. R. Interaction of the Dr1 inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6279–6282. doi: 10.1073/pnas.91.14.6279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee J. S., Galvin K. M., See R. H., Eckner R., Livingston D., Moran E., Shi Y. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev. 1995 May 15;9(10):1188–1198. doi: 10.1101/gad.9.10.1188. [DOI] [PubMed] [Google Scholar]
  33. Lee J. S., See R. H., Galvin K. M., Wang J., Shi Y. Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Res. 1995 Mar 25;23(6):925–931. doi: 10.1093/nar/23.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Leng X., Connell-Crowley L., Goodrich D., Harper J. W. S-Phase entry upon ectopic expression of G1 cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation. Curr Biol. 1997 Sep 1;7(9):709–712. doi: 10.1016/s0960-9822(06)00301-0. [DOI] [PubMed] [Google Scholar]
  35. Leone G., DeGregori J., Sears R., Jakoi L., Nevins J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature. 1997 May 22;387(6631):422–426. doi: 10.1038/387422a0. [DOI] [PubMed] [Google Scholar]
  36. Leone G., DeGregori J., Yan Z., Jakoi L., Ishida S., Williams R. S., Nevins J. R. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 1998 Jul 15;12(14):2120–2130. doi: 10.1101/gad.12.14.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lewis B. A., Tullis G., Seto E., Horikoshi N., Weinmann R., Shenk T. Adenovirus E1A proteins interact with the cellular YY1 transcription factor. J Virol. 1995 Mar;69(3):1628–1636. doi: 10.1128/jvi.69.3.1628-1636.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lukas J., Bartkova J., Rohde M., Strauss M., Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol. 1995 May;15(5):2600–2611. doi: 10.1128/mcb.15.5.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lukas J., Herzinger T., Hansen K., Moroni M. C., Resnitzky D., Helin K., Reed S. I., Bartek J. Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev. 1997 Jun 1;11(11):1479–1492. doi: 10.1101/gad.11.11.1479. [DOI] [PubMed] [Google Scholar]
  40. Lukas J., Müller H., Bartkova J., Spitkovsky D., Kjerulff A. A., Jansen-Dürr P., Strauss M., Bartek J. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1. J Cell Biol. 1994 May;125(3):625–638. doi: 10.1083/jcb.125.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lukas J., Parry D., Aagaard L., Mann D. J., Bartkova J., Strauss M., Peters G., Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995 Jun 8;375(6531):503–506. doi: 10.1038/375503a0. [DOI] [PubMed] [Google Scholar]
  42. Lukas J., Petersen B. O., Holm K., Bartek J., Helin K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 1996 Mar;16(3):1047–1057. doi: 10.1128/mcb.16.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lundberg A. S., Weinberg R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol. 1998 Feb;18(2):753–761. doi: 10.1128/mcb.18.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mal A., Poon R. Y., Howe P. H., Toyoshima H., Hunter T., Harter M. L. Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFbeta-treated cells. Nature. 1996 Mar 21;380(6571):262–265. doi: 10.1038/380262a0. [DOI] [PubMed] [Google Scholar]
  45. Mann D. J., Jones N. C. E2F-1 but not E2F-4 can overcome p16-induced G1 cell-cycle arrest. Curr Biol. 1996 Apr 1;6(4):474–483. doi: 10.1016/s0960-9822(02)00515-8. [DOI] [PubMed] [Google Scholar]
  46. Medema R. H., Herrera R. E., Lam F., Weinberg R. A. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6289–6293. doi: 10.1073/pnas.92.14.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Meijer L. Chemical inhibitors of cyclin-dependent kinases. Trends Cell Biol. 1996 Oct;6(10):393–397. doi: 10.1016/0962-8924(96)10034-9. [DOI] [PubMed] [Google Scholar]
  48. Mittnacht S. Control of pRB phosphorylation. Curr Opin Genet Dev. 1998 Feb;8(1):21–27. doi: 10.1016/s0959-437x(98)80057-9. [DOI] [PubMed] [Google Scholar]
  49. Moran E. DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev. 1993 Feb;3(1):63–70. doi: 10.1016/s0959-437x(05)80342-9. [DOI] [PubMed] [Google Scholar]
  50. Morgan D. O. Principles of CDK regulation. Nature. 1995 Mar 9;374(6518):131–134. doi: 10.1038/374131a0. [DOI] [PubMed] [Google Scholar]
  51. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Müller D., Bouchard C., Rudolph B., Steiner P., Stuckmann I., Saffrich R., Ansorge W., Huttner W., Eilers M. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene. 1997 Nov 20;15(21):2561–2576. doi: 10.1038/sj.onc.1201440. [DOI] [PubMed] [Google Scholar]
  53. Ohtani K., DeGregori J., Nevins J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12146–12150. doi: 10.1073/pnas.92.26.12146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ohtsubo M., Theodoras A. M., Schumacher J., Roberts J. M., Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995 May;15(5):2612–2624. doi: 10.1128/mcb.15.5.2612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pardee A. B. G1 events and regulation of cell proliferation. Science. 1989 Nov 3;246(4930):603–608. doi: 10.1126/science.2683075. [DOI] [PubMed] [Google Scholar]
  56. Paulus W., Baur I., Boyce F. M., Breakefield X. O., Reeves S. A. Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J Virol. 1996 Jan;70(1):62–67. doi: 10.1128/jvi.70.1.62-67.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Polyak K., Lee M. H., Erdjument-Bromage H., Koff A., Roberts J. M., Tempst P., Massagué J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994 Jul 15;78(1):59–66. doi: 10.1016/0092-8674(94)90572-x. [DOI] [PubMed] [Google Scholar]
  58. Prall O. W., Rogan E. M., Musgrove E. A., Watts C. K., Sutherland R. L. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol. 1998 Aug;18(8):4499–4508. doi: 10.1128/mcb.18.8.4499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Pérez-Roger I., Solomon D. L., Sewing A., Land H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene. 1997 May 22;14(20):2373–2381. doi: 10.1038/sj.onc.1201197. [DOI] [PubMed] [Google Scholar]
  60. Qin X. Q., Chittenden T., Livingston D. M., Kaelin W. G., Jr Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 1992 Jun;6(6):953–964. doi: 10.1101/gad.6.6.953. [DOI] [PubMed] [Google Scholar]
  61. Quelle D. E., Ashmun R. A., Hannon G. J., Rehberger P. A., Trono D., Richter K. H., Walker C., Beach D., Sherr C. J., Serrano M. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene. 1995 Aug 17;11(4):635–645. [PubMed] [Google Scholar]
  62. Resnitzky D., Reed S. I. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol. 1995 Jul;15(7):3463–3469. doi: 10.1128/mcb.15.7.3463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Reynisdóttir I., Massagué J. The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev. 1997 Feb 15;11(4):492–503. doi: 10.1101/gad.11.4.492. [DOI] [PubMed] [Google Scholar]
  64. Reynisdóttir I., Polyak K., Iavarone A., Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995 Aug 1;9(15):1831–1845. doi: 10.1101/gad.9.15.1831. [DOI] [PubMed] [Google Scholar]
  65. Rudolph B., Saffrich R., Zwicker J., Henglein B., Müller R., Ansorge W., Eilers M. Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A, but not apoptosis. EMBO J. 1996 Jun 17;15(12):3065–3076. [PMC free article] [PubMed] [Google Scholar]
  66. Sang N., Giordano A. Extreme N terminus of E1A oncoprotein specifically associates with a new set of cellular proteins. J Cell Physiol. 1997 Feb;170(2):182–191. doi: 10.1002/(SICI)1097-4652(199702)170:2<182::AID-JCP10>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  67. Sherr C. J. D-type cyclins. Trends Biochem Sci. 1995 May;20(5):187–190. doi: 10.1016/s0968-0004(00)89005-2. [DOI] [PubMed] [Google Scholar]
  68. Sherr C. J. G1 phase progression: cycling on cue. Cell. 1994 Nov 18;79(4):551–555. doi: 10.1016/0092-8674(94)90540-1. [DOI] [PubMed] [Google Scholar]
  69. Sherr C. J., Roberts J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995 May 15;9(10):1149–1163. doi: 10.1101/gad.9.10.1149. [DOI] [PubMed] [Google Scholar]
  70. Somasundaram K., Jayaraman G., Williams T., Moran E., Frisch S., Thimmapaya B. Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3088–3093. doi: 10.1073/pnas.93.7.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Spitkovsky D., Jansen-Dürr P., Karsenti E., Hoffman I. S-phase induction by adenovirus E1A requires activation of cdc25a tyrosine phosphatase. Oncogene. 1996 Jun 20;12(12):2549–2554. [PubMed] [Google Scholar]
  72. Terada Y., Tatsuka M., Jinno S., Okayama H. Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature. 1995 Jul 27;376(6538):358–362. doi: 10.1038/376358a0. [DOI] [PubMed] [Google Scholar]
  73. Toyoshima H., Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994 Jul 15;78(1):67–74. doi: 10.1016/0092-8674(94)90573-8. [DOI] [PubMed] [Google Scholar]
  74. Trouche D., Kouzarides T. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1439–1442. doi: 10.1073/pnas.93.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Vlach J., Hennecke S., Alevizopoulos K., Conti D., Amati B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 1996 Dec 2;15(23):6595–6604. [PMC free article] [PubMed] [Google Scholar]
  76. Wang H. G., Yaciuk P., Ricciardi R. P., Green M., Yokoyama K., Moran E. The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. J Virol. 1993 Aug;67(8):4804–4813. doi: 10.1128/jvi.67.8.4804-4813.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wang X., Gorospe M., Huang Y., Holbrook N. J. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene. 1997 Dec 11;15(24):2991–2997. doi: 10.1038/sj.onc.1201450. [DOI] [PubMed] [Google Scholar]
  78. Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323–330. doi: 10.1016/0092-8674(95)90385-2. [DOI] [PubMed] [Google Scholar]
  79. White R. J., Khoo B. C., Inostroza J. A., Reinberg D., Jackson S. P. Differential regulation of RNA polymerases I, II, and III by the TBP-binding repressor Dr1. Science. 1994 Oct 21;266(5184):448–450. doi: 10.1126/science.7939686. [DOI] [PubMed] [Google Scholar]
  80. Xiao Z. X., Ginsberg D., Ewen M., Livingston D. M. Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4633–4637. doi: 10.1073/pnas.93.10.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Yan Z., DeGregori J., Shohet R., Leone G., Stillman B., Nevins J. R., Williams R. S. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3603–3608. doi: 10.1073/pnas.95.7.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Zetterberg A., Larsson O., Wiman K. G. What is the restriction point? Curr Opin Cell Biol. 1995 Dec;7(6):835–842. doi: 10.1016/0955-0674(95)80067-0. [DOI] [PubMed] [Google Scholar]
  83. Zhao J., Dynlacht B., Imai T., Hori T., Harlow E. Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev. 1998 Feb 15;12(4):456–461. doi: 10.1101/gad.12.4.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. van den Heuvel S., Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 1993 Dec 24;262(5142):2050–2054. doi: 10.1126/science.8266103. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES