Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 16;17(22):6573–6586. doi: 10.1093/emboj/17.22.6573

Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha.

P J Kallio 1, K Okamoto 1, S O'Brien 1, P Carrero 1, Y Makino 1, H Tanaka 1, L Poellinger 1
PMCID: PMC1171004  PMID: 9822602

Abstract

In response to decreased cellular oxygen concentrations the basic helix-loop-helix (bHLH)/PAS (Per, Arnt, Sim) hypoxia-inducible transcription factor, HIF-1alpha, mediates activation of networks of target genes involved in angiogenesis, erythropoiesis and glycolysis. Here we demonstrate that the mechanism of activation of HIF-1alpha is a multi-step process which includes hypoxia-dependent nuclear import and activation (derepression) of the transactivation domain, resulting in recruitment of the CREB-binding protein (CBP)/p300 coactivator. Inducible nuclear accumulation was shown to be dependent on a nuclear localization signal (NLS) within the C-terminal end of HIF-1alpha which also harbors the hypoxia-inducible transactivation domain. Nuclear import of HIF-1alpha was inhibited by either deletion or a single amino acid substitution within the NLS sequence motif and, within the context of the full-length protein, these mutations also resulted in inhibition of the transactivation activity of HIF-1alpha and recruitment of CBP. However, nuclear localization per se was not sufficient for transcriptional activation, since fusion of HIF-1alpha to the heterologous GAL4 DNA-binding domain generated a protein which showed constitutive nuclear localization but required hypoxic stimuli for function as a CBP-dependent transcription factor. Thus, hypoxia-inducible nuclear import and transactivation by recruitment of CBP can be functionally separated from one another and play critical roles in signal transduction by HIF-1alpha.

Full Text

The Full Text of this article is available as a PDF (530.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An W. G., Kanekal M., Simon M. C., Maltepe E., Blagosklonny M. V., Neckers L. M. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998 Mar 26;392(6674):405–408. doi: 10.1038/32925. [DOI] [PubMed] [Google Scholar]
  2. Antoch M. P., Song E. J., Chang A. M., Vitaterna M. H., Zhao Y., Wilsbacher L. D., Sangoram A. M., King D. P., Pinto L. H., Takahashi J. S. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell. 1997 May 16;89(4):655–667. doi: 10.1016/s0092-8674(00)80246-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antonsson C., Arulampalam V., Whitelaw M. L., Pettersson S., Poellinger L. Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. J Biol Chem. 1995 Jun 9;270(23):13968–13972. doi: 10.1074/jbc.270.23.13968. [DOI] [PubMed] [Google Scholar]
  4. Arany Z., Huang L. E., Eckner R., Bhattacharya S., Jiang C., Goldberg M. A., Bunn H. F., Livingston D. M. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12969–12973. doi: 10.1073/pnas.93.23.12969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  6. Carey K. L., Richards S. A., Lounsbury K. M., Macara I. G. Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import. J Cell Biol. 1996 Jun;133(5):985–996. doi: 10.1083/jcb.133.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carver L. A., Jackiw V., Bradfield C. A. The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. J Biol Chem. 1994 Dec 2;269(48):30109–30112. [PubMed] [Google Scholar]
  8. Coumailleau P., Poellinger L., Gustafsson J. A., Whitelaw M. L. Definition of a minimal domain of the dioxin receptor that is associated with Hsp90 and maintains wild type ligand binding affinity and specificity. J Biol Chem. 1995 Oct 20;270(42):25291–25300. doi: 10.1074/jbc.270.42.25291. [DOI] [PubMed] [Google Scholar]
  9. Crews S. T. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 1998 Mar 1;12(5):607–620. doi: 10.1101/gad.12.5.607. [DOI] [PubMed] [Google Scholar]
  10. Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
  11. Dingwall C., Dilworth S. M., Black S. J., Kearsey S. E., Cox L. S., Laskey R. A. Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J. 1987 Jan;6(1):69–74. doi: 10.1002/j.1460-2075.1987.tb04720.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eguchi H., Ikuta T., Tachibana T., Yoneda Y., Kawajiri K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem. 1997 Jul 11;272(28):17640–17647. doi: 10.1074/jbc.272.28.17640. [DOI] [PubMed] [Google Scholar]
  13. Georget V., Lobaccaro J. M., Terouanne B., Mangeat P., Nicolas J. C., Sultan C. Trafficking of the androgen receptor in living cells with fused green fluorescent protein-androgen receptor. Mol Cell Endocrinol. 1997 Apr 25;129(1):17–26. doi: 10.1016/s0303-7207(97)04034-3. [DOI] [PubMed] [Google Scholar]
  14. Gradin K., McGuire J., Wenger R. H., Kvietikova I., fhitelaw M. L., Toftgård R., Tora L., Gassmann M., Poellinger L. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol. 1996 Oct;16(10):5221–5231. doi: 10.1128/mcb.16.10.5221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  16. Guillemin K., Krasnow M. A. The hypoxic response: huffing and HIFing. Cell. 1997 Apr 4;89(1):9–12. doi: 10.1016/s0092-8674(00)80176-2. [DOI] [PubMed] [Google Scholar]
  17. Guiochon-Mantel A., Lescop P., Christin-Maitre S., Loosfelt H., Perrot-Applanat M., Milgrom E. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 1991 Dec;10(12):3851–3859. doi: 10.1002/j.1460-2075.1991.tb04954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Htun H., Barsony J., Renyi I., Gould D. L., Hager G. L. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4845–4850. doi: 10.1073/pnas.93.10.4845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang L. E., Arany Z., Livingston D. M., Bunn H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996 Dec 13;271(50):32253–32259. doi: 10.1074/jbc.271.50.32253. [DOI] [PubMed] [Google Scholar]
  20. Ikuta T., Eguchi H., Tachibana T., Yoneda Y., Kawajiri K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 1998 Jan 30;273(5):2895–2904. doi: 10.1074/jbc.273.5.2895. [DOI] [PubMed] [Google Scholar]
  21. Imhof A., Yang X. J., Ogryzko V. V., Nakatani Y., Wolffe A. P., Ge H. Acetylation of general transcription factors by histone acetyltransferases. Curr Biol. 1997 Sep 1;7(9):689–692. doi: 10.1016/s0960-9822(06)00296-x. [DOI] [PubMed] [Google Scholar]
  22. Iyer N. V., Kotch L. E., Agani F., Leung S. W., Laughner E., Wenger R. H., Gassmann M., Gearhart J. D., Lawler A. M., Yu A. Y. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998 Jan 15;12(2):149–162. doi: 10.1101/gad.12.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang B. H., Zheng J. Z., Leung S. W., Roe R., Semenza G. L. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 1997 Aug 1;272(31):19253–19260. doi: 10.1074/jbc.272.31.19253. [DOI] [PubMed] [Google Scholar]
  24. Kallio P. J., Pongratz I., Gradin K., McGuire J., Poellinger L. Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5667–5672. doi: 10.1073/pnas.94.11.5667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lindebro M. C., Poellinger L., Whitelaw M. L. Protein-protein interaction via PAS domains: role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor-Arnt transcription factor complex. EMBO J. 1995 Jul 17;14(14):3528–3539. doi: 10.1002/j.1460-2075.1995.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ma J., Ptashne M. A new class of yeast transcriptional activators. Cell. 1987 Oct 9;51(1):113–119. doi: 10.1016/0092-8674(87)90015-8. [DOI] [PubMed] [Google Scholar]
  27. Maltepe E., Schmidt J. V., Baunoch D., Bradfield C. A., Simon M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature. 1997 Mar 27;386(6623):403–407. doi: 10.1038/386403a0. [DOI] [PubMed] [Google Scholar]
  28. Martinez-Balbás M. A., Bannister A. J., Martin K., Haus-Seuffert P., Meisterernst M., Kouzarides T. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 1998 May 15;17(10):2886–2893. doi: 10.1093/emboj/17.10.2886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ogawa H., Inouye S., Tsuji F. I., Yasuda K., Umesono K. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11899–11903. doi: 10.1073/pnas.92.25.11899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Picard D., Yamamoto K. R. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 1987 Nov;6(11):3333–3340. doi: 10.1002/j.1460-2075.1987.tb02654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pollenz R. S., Sattler C. A., Poland A. The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. Mol Pharmacol. 1994 Mar;45(3):428–438. [PubMed] [Google Scholar]
  32. Pongratz I., Mason G. G., Poellinger L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J Biol Chem. 1992 Jul 5;267(19):13728–13734. [PubMed] [Google Scholar]
  33. Pugh C. W., O'Rourke J. F., Nagao M., Gleadle J. M., Ratcliffe P. J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem. 1997 Apr 25;272(17):11205–11214. doi: 10.1074/jbc.272.17.11205. [DOI] [PubMed] [Google Scholar]
  34. Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997 Sep 5;272(36):22642–22647. doi: 10.1074/jbc.272.36.22642. [DOI] [PubMed] [Google Scholar]
  35. Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 1997 Jun;7(6):230–236. doi: 10.1016/S0962-8924(97)01048-9. [DOI] [PubMed] [Google Scholar]
  36. Sogawa K., Nakano R., Kobayashi A., Kikuchi Y., Ohe N., Matsushita N., Fujii-Kuriyama Y. Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1936–1940. doi: 10.1073/pnas.92.6.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stancovski I., Baltimore D. NF-kappaB activation: the I kappaB kinase revealed? Cell. 1997 Oct 31;91(3):299–302. doi: 10.1016/s0092-8674(00)80413-4. [DOI] [PubMed] [Google Scholar]
  38. Sun Z. S., Albrecht U., Zhuchenko O., Bailey J., Eichele G., Lee C. C. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell. 1997 Sep 19;90(6):1003–1011. doi: 10.1016/s0092-8674(00)80366-9. [DOI] [PubMed] [Google Scholar]
  39. Swanson H. I., Chan W. K., Bradfield C. A. DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem. 1995 Nov 3;270(44):26292–26302. doi: 10.1074/jbc.270.44.26292. [DOI] [PubMed] [Google Scholar]
  40. Tei H., Okamura H., Shigeyoshi Y., Fukuhara C., Ozawa R., Hirose M., Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 1997 Oct 2;389(6650):512–516. doi: 10.1038/39086. [DOI] [PubMed] [Google Scholar]
  41. Torchia J., Glass C., Rosenfeld M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol. 1998 Jun;10(3):373–383. doi: 10.1016/s0955-0674(98)80014-8. [DOI] [PubMed] [Google Scholar]
  42. Vandromme M., Gauthier-Rouvière C., Lamb N., Fernandez A. Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci. 1996 Feb;21(2):59–64. [PubMed] [Google Scholar]
  43. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ward M. P., Mosher J. T., Crews S. T. Regulation of bHLH-PAS protein subcellular localization during Drosophila embryogenesis. Development. 1998 May;125(9):1599–1608. doi: 10.1242/dev.125.9.1599. [DOI] [PubMed] [Google Scholar]
  45. Wenger R. H., Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997 Jul;378(7):609–616. [PubMed] [Google Scholar]
  46. Whitelaw M. L., Göttlicher M., Gustafsson J. A., Poellinger L. Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor. EMBO J. 1993 Nov;12(11):4169–4179. doi: 10.1002/j.1460-2075.1993.tb06101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Whitelaw M. L., McGuire J., Picard D., Gustafsson J. A., Poellinger L. Heat shock protein hsp90 regulates dioxin receptor function in vivo. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4437–4441. doi: 10.1073/pnas.92.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ylikomi T., Bocquel M. T., Berry M., Gronemeyer H., Chambon P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J. 1992 Oct;11(10):3681–3694. doi: 10.1002/j.1460-2075.1992.tb05453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zelzer E., Wappner P., Shilo B. Z. The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes Dev. 1997 Aug 15;11(16):2079–2089. doi: 10.1101/gad.11.16.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES