Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 1;17(23):6912–6923. doi: 10.1093/emboj/17.23.6912

A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation.

P M Irusta 1, D DiMaio 1
PMCID: PMC1171039  PMID: 9843497

Abstract

Platelet-derived growth factor beta receptor (PDGFbetaR) is a transmembrane receptor tyrosine kinase involved in a variety of cellular functions. We have generated a constitutively activated murine PDGFbetaR containing a valine to alanine substitution at residue 536, located in the cytoplasmic juxtamembrane domain. When this mutant receptor (PR-V536A) was expressed in Ba/F3 cells, it allowed the cells to survive and proliferate in the absence of IL-3 or PDGF, and tyrosine phosphorylation of PR-V536A was increased markedly compared with that of the wild-type PDGFbetaR in the absence of ligand and similar to that observed in ligand-activated PDGFbetaR. PR-V536A displayed increased tyrosine kinase activity in vitro toward an exogenous substrate, and the tyrosine kinase activity of the receptor was required for the constitutive activation of the mutant. This valine to alanine substitution also activated a PDGFbetaR mutant unable to bind PDGF. Alanine substitutions at positions homologous to V536 of the murine PDGFbetaR also activated other members of the PDGF receptor subfamily. The amino acid sequence of this region revealed a strong similarity to WW domains present in other signal transduction proteins. Furthermore, GST fusion proteins containing the juxtamembrane region of the PDGFR specifically associated with peptides containing the WW domain consensus recognition sequence PPXY. The results suggest that the cytoplasmic juxtamembrane domain plays a role in the regulation of receptor activity and function, perhaps by participating in protein-protein interactions.

Full Text

The Full Text of this article is available as a PDF (574.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bargmann C. I., Hung M. C., Weinberg R. A. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986 Jan 16;319(6050):226–230. doi: 10.1038/319226a0. [DOI] [PubMed] [Google Scholar]
  2. Baxter R. M., Secrist J. P., Vaillancourt R. R., Kazlauskas A. Full activation of the platelet-derived growth factor beta-receptor kinase involves multiple events. J Biol Chem. 1998 Jul 3;273(27):17050–17055. doi: 10.1074/jbc.273.27.17050. [DOI] [PubMed] [Google Scholar]
  3. Cahir McFarland E. D., Thomas M. L. CD45 protein-tyrosine phosphatase associates with the WW domain-containing protein, CD45AP, through the transmembrane region. J Biol Chem. 1995 Nov 24;270(47):28103–28107. doi: 10.1074/jbc.270.47.28103. [DOI] [PubMed] [Google Scholar]
  4. Carroll M., Tomasson M. H., Barker G. F., Golub T. R., Gilliland D. G. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14845–14850. doi: 10.1073/pnas.93.25.14845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen H. E., Chang S., Trub T., Neel B. G. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1996 Jul;16(7):3685–3697. doi: 10.1128/mcb.16.7.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chi K. D., McPhee R. A., Wagner A. S., Dietz J. J., Pantazis P., Goustin A. S. Integration of proviral DNA into the PDGF beta-receptor gene in HTLV-I-infected T-cells results in a novel tyrosine kinase product with transforming activity. Oncogene. 1997 Aug 28;15(9):1051–1057. doi: 10.1038/sj.onc.1201267. [DOI] [PubMed] [Google Scholar]
  7. Drummond-Barbosa D. A., Vaillancourt R. R., Kazlauskas A., DiMaio D. Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol Cell Biol. 1995 May;15(5):2570–2581. doi: 10.1128/mcb.15.5.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Einbond A., Sudol M. Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Lett. 1996 Apr 8;384(1):1–8. doi: 10.1016/0014-5793(96)00263-3. [DOI] [PubMed] [Google Scholar]
  9. Escobedo J. A., Barr P. J., Williams L. T. Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor. Mol Cell Biol. 1988 Dec;8(12):5126–5131. doi: 10.1128/mcb.8.12.5126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frangioni J. V., Neel B. G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993 Apr;210(1):179–187. doi: 10.1006/abio.1993.1170. [DOI] [PubMed] [Google Scholar]
  11. Golub T. R., Barker G. F., Lovett M., Gilliland D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994 Apr 22;77(2):307–316. doi: 10.1016/0092-8674(94)90322-0. [DOI] [PubMed] [Google Scholar]
  12. Hansen K., Johnell M., Siegbahn A., Rorsman C., Engström U., Wernstedt C., Heldin C. H., Rönnstrand L. Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis. EMBO J. 1996 Oct 1;15(19):5299–5313. [PMC free article] [PubMed] [Google Scholar]
  13. Heldin C. H. Structural and functional studies on platelet-derived growth factor. EMBO J. 1992 Dec;11(12):4251–4259. doi: 10.1002/j.1460-2075.1992.tb05523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirota S., Isozaki K., Moriyama Y., Hashimoto K., Nishida T., Ishiguro S., Kawano K., Hanada M., Kurata A., Takeda M. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998 Jan 23;279(5350):577–580. doi: 10.1126/science.279.5350.577. [DOI] [PubMed] [Google Scholar]
  15. Kaelin W. G., Jr, Krek W., Sellers W. R., DeCaprio J. A., Ajchenbaum F., Fuchs C. S., Chittenden T., Li Y., Farnham P. J., Blanar M. A. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992 Jul 24;70(2):351–364. doi: 10.1016/0092-8674(92)90108-o. [DOI] [PubMed] [Google Scholar]
  16. Kanakura Y., Furitsu T., Tsujimura T., Butterfield J. H., Ashman L. K., Ikeda H., Kitayama H., Kanayama Y., Matsuzawa Y., Kitamura Y. Activating mutations of the c-kit proto-oncogene in a human mast cell leukemia cell line. Leukemia. 1994 Apr;8 (Suppl 1):S18–S22. [PubMed] [Google Scholar]
  17. Kelly J. D., Haldeman B. A., Grant F. J., Murray M. J., Seifert R. A., Bowen-Pope D. F., Cooper J. A., Kazlauskas A. Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. J Biol Chem. 1991 May 15;266(14):8987–8992. [PubMed] [Google Scholar]
  18. Kitayama H., Kanakura Y., Furitsu T., Tsujimura T., Oritani K., Ikeda H., Sugahara H., Mitsui H., Kanayama Y., Kitamura Y. Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. Blood. 1995 Feb 1;85(3):790–798. [PubMed] [Google Scholar]
  19. Kovalenko M., Gazit A., Böhmer A., Rorsman C., Rönnstrand L., Heldin C. H., Waltenberger J., Böhmer F. D., Levitzki A. Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res. 1994 Dec 1;54(23):6106–6114. [PubMed] [Google Scholar]
  20. Kozlowski M., Larose L., Lee F., Le D. M., Rottapel R., Siminovitch K. A. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol. 1998 Apr;18(4):2089–2099. doi: 10.1128/mcb.18.4.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lorenz U., Bergemann A. D., Steinberg H. N., Flanagan J. G., Li X., Galli S. J., Neel B. G. Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. J Exp Med. 1996 Sep 1;184(3):1111–1126. doi: 10.1084/jem.184.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mori S., Rönnstrand L., Yokote K., Engström A., Courtneidge S. A., Claesson-Welsh L., Heldin C. H. Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. 1993 Jun;12(6):2257–2264. doi: 10.1002/j.1460-2075.1993.tb05879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palacios R., Steinmetz M. Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 1985 Jul;41(3):727–734. doi: 10.1016/s0092-8674(85)80053-2. [DOI] [PubMed] [Google Scholar]
  24. Paulson R. F., Vesely S., Siminovitch K. A., Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet. 1996 Jul;13(3):309–315. doi: 10.1038/ng0796-309. [DOI] [PubMed] [Google Scholar]
  25. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petti L. M., Irusta P. M., DiMaio D. Oncogenic activation of the PDGF beta receptor by the transmembrane domain of p185neu*. Oncogene. 1998 Feb 19;16(7):843–851. doi: 10.1038/sj.onc.1201590. [DOI] [PubMed] [Google Scholar]
  27. Petti L. M., Reddy V., Smith S. O., DiMaio D. Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein. J Virol. 1997 Oct;71(10):7318–7327. doi: 10.1128/jvi.71.10.7318-7327.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Petti L., DiMaio D. Specific interaction between the bovine papillomavirus E5 transforming protein and the beta receptor for platelet-derived growth factor in stably transformed and acutely transfected cells. J Virol. 1994 Jun;68(6):3582–3592. doi: 10.1128/jvi.68.6.3582-3592.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Piao X., Paulson R., van der Geer P., Pawson T., Bernstein A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14665–14669. doi: 10.1073/pnas.93.25.14665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pirozzi G., McConnell S. J., Uveges A. J., Carter J. M., Sparks A. B., Kay B. K., Fowlkes D. M. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem. 1997 Jun 6;272(23):14611–14616. doi: 10.1074/jbc.272.23.14611. [DOI] [PubMed] [Google Scholar]
  31. Ross T. S., Bernard O. A., Berger R., Gilliland D. G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood. 1998 Jun 15;91(12):4419–4426. [PubMed] [Google Scholar]
  32. Roussel M. F., Downing J. R., Rettenmier C. W., Sherr C. J. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell. 1988 Dec 23;55(6):979–988. doi: 10.1016/0092-8674(88)90243-7. [DOI] [PubMed] [Google Scholar]
  33. Santoro M., Carlomagno F., Romano A., Bottaro D. P., Dathan N. A., Grieco M., Fusco A., Vecchio G., Matoskova B., Kraus M. H. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995 Jan 20;267(5196):381–383. doi: 10.1126/science.7824936. [DOI] [PubMed] [Google Scholar]
  34. Smith S. O., Smith C. S., Bormann B. J. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Biol. 1996 Mar;3(3):252–258. doi: 10.1038/nsb0396-252. [DOI] [PubMed] [Google Scholar]
  35. Songyang Z., Carraway K. L., 3rd, Eck M. J., Harrison S. C., Feldman R. A., Mohammadi M., Schlessinger J., Hubbard S. R., Smith D. P., Eng C. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature. 1995 Feb 9;373(6514):536–539. doi: 10.1038/373536a0. [DOI] [PubMed] [Google Scholar]
  36. Sudol M. Structure and function of the WW domain. Prog Biophys Mol Biol. 1996;65(1-2):113–132. doi: 10.1016/s0079-6107(96)00008-9. [DOI] [PubMed] [Google Scholar]
  37. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  38. Valius M., Kazlauskas A. Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell. 1993 Apr 23;73(2):321–334. doi: 10.1016/0092-8674(93)90232-f. [DOI] [PubMed] [Google Scholar]
  39. Valius M., Secrist J. P., Kazlauskas A. The GTPase-activating protein of Ras suppresses platelet-derived growth factor beta receptor signaling by silencing phospholipase C-gamma 1. Mol Cell Biol. 1995 Jun;15(6):3058–3071. doi: 10.1128/mcb.15.6.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weiner D. B., Liu J., Cohen J. A., Williams W. V., Greene M. I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989 May 18;339(6221):230–231. doi: 10.1038/339230a0. [DOI] [PubMed] [Google Scholar]
  41. Yarden Y., Escobedo J. A., Kuang W. J., Yang-Feng T. L., Daniel T. O., Tremble P. M., Chen E. Y., Ando M. E., Harkins R. N., Francke U. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature. 1986 Sep 18;323(6085):226–232. doi: 10.1038/323226a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES