Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):49–57. doi: 10.1093/emboj/18.1.49

Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family.

R Pfeiffer 1, G Rossier 1, B Spindler 1, C Meier 1, L Kühn 1, F Verrey 1
PMCID: PMC1171101  PMID: 9878049

Abstract

Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.

Full Text

The Full Text of this article is available as a PDF (579.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albritton L. M., Tseng L., Scadden D., Cunningham J. M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell. 1989 May 19;57(4):659–666. doi: 10.1016/0092-8674(89)90134-7. [DOI] [PubMed] [Google Scholar]
  2. Angelo S., Devés R. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. J Membr Biol. 1994 Aug;141(2):183–192. doi: 10.1007/BF00238252. [DOI] [PubMed] [Google Scholar]
  3. Angelo S., Irarrázabal C., Devés R. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations. J Membr Biol. 1996 Sep;153(1):37–44. doi: 10.1007/s002329900107. [DOI] [PubMed] [Google Scholar]
  4. Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bröer A., Hamprecht B., Bröer S. Discrimination of two amino acid transport activities in 4F2 heavy chain- expressing Xenopus laevis oocytes. Biochem J. 1998 Aug 1;333(Pt 3):549–554. doi: 10.1042/bj3330549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bröer S., Bröer A., Hamprecht B. Expression of the surface antigen 4F2hc affects system-L-like neutral-amino-acid-transport activity in mammalian cells. Biochem J. 1997 Jun 1;324(Pt 2):535–541. doi: 10.1042/bj3240535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bröer S., Bröer A., Hamprecht B. The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J. 1995 Dec 15;312(Pt 3):863–870. doi: 10.1042/bj3120863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  9. Christensen H. N., Albritton L. M., Kakuda D. K., MacLeod C. L. Gene-product designations for amino acid transporters. J Exp Biol. 1994 Nov;196:51–57. doi: 10.1242/jeb.196.1.51. [DOI] [PubMed] [Google Scholar]
  10. Devés R., Angelo S. Changes in membrane and surface potential explain the opposite effects of low ionic strength on the two lysine transporters of human erythrocytes. J Biol Chem. 1996 Dec 13;271(50):32034–32039. doi: 10.1074/jbc.271.50.32034. [DOI] [PubMed] [Google Scholar]
  11. Devés R., Angelo S., Chávez P. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol. 1993 Aug;468:753–766. doi: 10.1113/jphysiol.1993.sp019799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devés R., Boyd C. A. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998 Apr;78(2):487–545. doi: 10.1152/physrev.1998.78.2.487. [DOI] [PubMed] [Google Scholar]
  13. Devés R., Chavez P., Boyd C. A. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol. 1992 Aug;454:491–501. doi: 10.1113/jphysiol.1992.sp019275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dixon W. T., Sikora L. K., Demetrick D. J., Jerry L. M. Isolation and characterization of a heterodimeric surface antigen on human melanoma cells and evidence that it is the 4F2 cell activation/proliferation molecule. Int J Cancer. 1990 Jan 15;45(1):59–68. doi: 10.1002/ijc.2910450113. [DOI] [PubMed] [Google Scholar]
  15. Fei Y. J., Prasad P. D., Leibach F. H., Ganapathy V. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Biochemistry. 1995 Jul 11;34(27):8744–8751. doi: 10.1021/bi00027a025. [DOI] [PubMed] [Google Scholar]
  16. Fenczik C. A., Sethi T., Ramos J. W., Hughes P. E., Ginsberg M. H. Complementation of dominant suppression implicates CD98 in integrin activation. Nature. 1997 Nov 6;390(6655):81–85. doi: 10.1038/36349. [DOI] [PubMed] [Google Scholar]
  17. Geering K., Theulaz I., Verrey F., Häuptle M. T., Rossier B. C. A role for the beta-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C851–C858. doi: 10.1152/ajpcell.1989.257.5.C851. [DOI] [PubMed] [Google Scholar]
  18. Haynes B. F., Hemler M. E., Mann D. L., Eisenbarth G. S., Shelhamer J., Mostowski H. S., Thomas C. A., Strominger J. L., Fauci A. S. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol. 1981 Apr;126(4):1409–1414. [PubMed] [Google Scholar]
  19. Hemler M. E., Strominger J. L. Characterization of antigen recognized by the monoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol. 1982 Aug;129(2):623–628. [PubMed] [Google Scholar]
  20. Kanai Y., Segawa H., Miyamoto K. i., Uchino H., Takeda E., Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998 Sep 11;273(37):23629–23632. doi: 10.1074/jbc.273.37.23629. [DOI] [PubMed] [Google Scholar]
  21. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature. 1991 Aug 22;352(6337):725–728. doi: 10.1038/352725a0. [DOI] [PubMed] [Google Scholar]
  22. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  23. Lüscher B., Rousseaux-Schmid M., Naim H. Y., MacDonald H. R., Bron C. Biosynthesis and maturation of the Lyt-2/3 molecular complex in mouse thymocytes. J Immunol. 1985 Sep;135(3):1937–1944. [PubMed] [Google Scholar]
  24. Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B., Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288–291. doi: 10.1038/26246. [DOI] [PubMed] [Google Scholar]
  25. Nagase T., Seki N., Ishikawa K., Ohira M., Kawarabayasi Y., Ohara O., Tanaka A., Kotani H., Miyajima N., Nomura N. Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 1996 Oct 31;3(5):321-9, 341-54. doi: 10.1093/dnares/3.5.321. [DOI] [PubMed] [Google Scholar]
  26. Parmacek M. S., Karpinski B. A., Gottesdiener K. M., Thompson C. B., Leiden J. M. Structure, expression and regulation of the murine 4F2 heavy chain. Nucleic Acids Res. 1989 Mar 11;17(5):1915–1931. doi: 10.1093/nar/17.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pfeiffer R., Spindler B., Loffing J., Skelly P. J., Shoemaker C. B., Verrey F. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett. 1998 Nov 13;439(1-2):157–162. doi: 10.1016/s0014-5793(98)01359-3. [DOI] [PubMed] [Google Scholar]
  28. Pickel V. M., Nirenberg M. J., Chan J., Mosckovitz R., Udenfriend S., Tate S. S. Ultrastructural localization of a neutral and basic amino acid transporter in rat kidney and intestine. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7779–7783. doi: 10.1073/pnas.90.16.7779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Puoti A., May A., Rossier B. C., Horisberger J. D. Novel isoforms of the beta and gamma subunits of the Xenopus epithelial Na channel provide information about the amiloride binding site and extracellular sodium sensing. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5949–5954. doi: 10.1073/pnas.94.11.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Quackenbush E. J., Gougos A., Baumal R., Letarte M. Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J Immunol. 1986 Jan;136(1):118–124. [PubMed] [Google Scholar]
  31. Rajantie J., Simell O., Perheentupa J. Lysinuric protein intolerance. Basolateral transport defect in renal tubuli. J Clin Invest. 1981 Apr;67(4):1078–1082. doi: 10.1172/JCI110120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. W., Scriver C. R., Tenenhouse H. S., Simell O. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7711–7715. doi: 10.1073/pnas.84.21.7711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spindler B., Mastroberardino L., Custer M., Verrey F. Characterization of early aldosterone-induced RNAs identified in A6 kidney epithelia. Pflugers Arch. 1997 Jul;434(3):323–331. doi: 10.1007/s004240050403. [DOI] [PubMed] [Google Scholar]
  34. Teixeira S., Di Grandi S., Kühn L. C. Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574–9580. [PubMed] [Google Scholar]
  35. Wang H., Kavanaugh M. P., North R. A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature. 1991 Aug 22;352(6337):729–731. doi: 10.1038/352729a0. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  37. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wells R. G., Lee W. S., Kanai Y., Leiden J. M., Hediger M. A. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem. 1992 Aug 5;267(22):15285–15288. [PubMed] [Google Scholar]
  39. Yagita H., Masuko T., Hashimoto Y. Inhibition of tumor cell growth in vitro by murine monoclonal antibodies that recognize a proliferation-associated cell surface antigen system in rats and humans. Cancer Res. 1986 Mar;46(3):1478–1484. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES