Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 1;18(7):1996–2007. doi: 10.1093/emboj/18.7.1996

The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein.

M Rodríguez-Concepción 1, S Yalovsky 1, M Zik 1, H Fromm 1, W Gruissem 1
PMCID: PMC1171284  PMID: 10202162

Abstract

Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.

Full Text

The Full Text of this article is available as a PDF (459.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ach R. A., Taranto P., Gruissem W. A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell. 1997 Sep;9(9):1595–1606. doi: 10.1105/tpc.9.9.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames J. B., Ishima R., Tanaka T., Gordon J. I., Stryer L., Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997 Sep 11;389(6647):198–202. doi: 10.1038/38310. [DOI] [PubMed] [Google Scholar]
  4. Askerlund P. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower. Plant Physiol. 1997 Jul;114(3):999–1007. doi: 10.1104/pp.114.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum G., Lev-Yadun S., Fridmann Y., Arazi T., Katsnelson H., Zik M., Fromm H. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J. 1996 Jun 17;15(12):2988–2996. [PMC free article] [PubMed] [Google Scholar]
  6. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  7. Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
  8. Caplin B. E., Hettich L. A., Marshall M. S. Substrate characterization of the Saccharomyces cerevisiae protein farnesyltransferase and type-I protein geranylgeranyltransferase. Biochim Biophys Acta. 1994 Mar 16;1205(1):39–48. doi: 10.1016/0167-4838(94)90089-2. [DOI] [PubMed] [Google Scholar]
  9. Casey P. J., Solski P. A., Der C. J., Buss J. E. p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8323–8327. doi: 10.1073/pnas.86.21.8323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cates C. A., Michael R. L., Stayrook K. R., Harvey K. A., Burke Y. D., Randall S. K., Crowell P. L., Crowell D. N. Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett. 1996 Dec 20;110(1-2):49–55. doi: 10.1016/s0304-3835(96)04459-x. [DOI] [PubMed] [Google Scholar]
  11. Chapman S., Kavanagh T., Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J. 1992 Jul;2(4):549–557. doi: 10.1046/j.1365-313x.1992.t01-24-00999.x. [DOI] [PubMed] [Google Scholar]
  12. Chiu W., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J. Engineered GFP as a vital reporter in plants. Curr Biol. 1996 Mar 1;6(3):325–330. doi: 10.1016/s0960-9822(02)00483-9. [DOI] [PubMed] [Google Scholar]
  13. Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem. 1992;61:355–386. doi: 10.1146/annurev.bi.61.070192.002035. [DOI] [PubMed] [Google Scholar]
  14. Collinge M., Trewavas A. J. The location of calmodulin in the pea plasma membrane. J Biol Chem. 1989 May 25;264(15):8865–8872. [PubMed] [Google Scholar]
  15. Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996 Aug 30;273(5279):1239–1241. doi: 10.1126/science.273.5279.1239. [DOI] [PubMed] [Google Scholar]
  16. Davis T. N., Urdea M. S., Masiarz F. R., Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. doi: 10.1016/0092-8674(86)90599-4. [DOI] [PubMed] [Google Scholar]
  17. De Smedt F., Boom A., Pesesse X., Schiffmann S. N., Erneux C. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem. 1996 Apr 26;271(17):10419–10424. doi: 10.1074/jbc.271.17.10419. [DOI] [PubMed] [Google Scholar]
  18. Deisseroth K., Heist E. K., Tsien R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature. 1998 Mar 12;392(6672):198–202. doi: 10.1038/32448. [DOI] [PubMed] [Google Scholar]
  19. Dickinson C. D., Altabella T., Chrispeels M. J. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gadbut A. P., Wu L., Tang D., Papageorge A., Watson J. A., Galper J. B. Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins. EMBO J. 1997 Dec 15;16(24):7250–7260. doi: 10.1093/emboj/16.24.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gelb M. H. Protein prenylation, et cetera: signal transduction in two dimensions. Science. 1997 Mar 21;275(5307):1750–1751. doi: 10.1126/science.275.5307.1750. [DOI] [PubMed] [Google Scholar]
  22. Gillaspy G., Ben-David H., Gruissem W. Fruits: A Developmental Perspective. Plant Cell. 1993 Oct;5(10):1439–1451. doi: 10.1105/tpc.5.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Glomset J. A., Farnsworth C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol. 1994;10:181–205. doi: 10.1146/annurev.cb.10.110194.001145. [DOI] [PubMed] [Google Scholar]
  24. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  25. Görlich D., Mattaj I. W. Nucleocytoplasmic transport. Science. 1996 Mar 15;271(5255):1513–1518. doi: 10.1126/science.271.5255.1513. [DOI] [PubMed] [Google Scholar]
  26. Halford N. G., Hardie D. G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol. 1998 Jul;37(5):735–748. doi: 10.1023/a:1006024231305. [DOI] [PubMed] [Google Scholar]
  27. Hancock J. F., Cadwallader K., Paterson H., Marshall C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 1991 Dec;10(13):4033–4039. doi: 10.1002/j.1460-2075.1991.tb04979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hancock J. F., Paterson H., Marshall C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 1990 Oct 5;63(1):133–139. doi: 10.1016/0092-8674(90)90294-o. [DOI] [PubMed] [Google Scholar]
  29. Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W. Apoplastic expression of yeast-derived invertase in potato : effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 1992 Sep;100(1):301–308. doi: 10.1104/pp.100.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Herbers K., Mönke G., Badur R., Sonnewald U. A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: isolation of cDNAs encoding a new class of pathogenesis-related proteins. Plant Mol Biol. 1995 Dec;29(5):1027–1038. doi: 10.1007/BF00014975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Inglese J., Glickman J. F., Lorenz W., Caron M. G., Lefkowitz R. J. Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J Biol Chem. 1992 Jan 25;267(3):1422–1425. [PubMed] [Google Scholar]
  32. Inglese J., Koch W. J., Caron M. G., Lefkowitz R. J. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature. 1992 Sep 10;359(6391):147–150. doi: 10.1038/359147a0. [DOI] [PubMed] [Google Scholar]
  33. James G. L., Goldstein J. L., Brown M. S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem. 1995 Mar 17;270(11):6221–6226. doi: 10.1074/jbc.270.11.6221. [DOI] [PubMed] [Google Scholar]
  34. Jones R. W., Jackson A. O., Morris T. J. Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology. 1990 Jun;176(2):539–545. doi: 10.1016/0042-6822(90)90024-l. [DOI] [PubMed] [Google Scholar]
  35. Kuroda Y., Suzuki N., Kataoka T. The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science. 1993 Jan 29;259(5095):683–686. doi: 10.1126/science.8430318. [DOI] [PubMed] [Google Scholar]
  36. Kurosaki F., Kaburaki H., Nishi A. Involvement of plasma membrane-located calmodulin in the response decay of cyclic nucleotide-gated cation channel of cultured carrot cells. FEBS Lett. 1994 Mar 7;340(3):193–196. doi: 10.1016/0014-5793(94)80136-3. [DOI] [PubMed] [Google Scholar]
  37. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  38. Lerchl J., Geigenberger P., Stitt M., Sonnewald U. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell. 1995 Mar;7(3):259–270. doi: 10.1105/tpc.7.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Loraine A. E., Yalovsky S., Fabry S., Gruissem W. Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells. Plant Physiol. 1996 Apr;110(4):1337–1347. doi: 10.1104/pp.110.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Marshall C. J. Protein prenylation: a mediator of protein-protein interactions. Science. 1993 Mar 26;259(5103):1865–1866. doi: 10.1126/science.8456312. [DOI] [PubMed] [Google Scholar]
  41. McLean B. G., Zupan J., Zambryski P. C. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 1995 Dec;7(12):2101–2114. doi: 10.1105/tpc.7.12.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Moores S. L., Schaber M. D., Mosser S. D., Rands E., O'Hara M. B., Garsky V. M., Marshall M. S., Pompliano D. L., Gibbs J. B. Sequence dependence of protein isoprenylation. J Biol Chem. 1991 Aug 5;266(22):14603–14610. [PubMed] [Google Scholar]
  43. Ohto Ma., Nakamura K. Sugar-Induced Increase of Calcium-Dependent Protein Kinases Associated with the Plasma Membrane in Leaf Tissues of Tobacco. Plant Physiol. 1995 Nov;109(3):973–981. doi: 10.1104/pp.109.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pei Z. M., Ghassemian M., Kwak C. M., McCourt P., Schroeder J. I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science. 1998 Oct 9;282(5387):287–290. doi: 10.1126/science.282.5387.287. [DOI] [PubMed] [Google Scholar]
  45. Pfeffer S. R., Dirac-Svejstrup A. B., Soldati T. Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J Biol Chem. 1995 Jul 21;270(29):17057–17059. doi: 10.1074/jbc.270.29.17057. [DOI] [PubMed] [Google Scholar]
  46. Porfiri E., Evans T., Chardin P., Hancock J. F. Prenylation of Ras proteins is required for efficient hSOS1-promoted guanine nucleotide exchange. J Biol Chem. 1994 Sep 9;269(36):22672–22677. [PubMed] [Google Scholar]
  47. Qian D., Zhou D., Ju R., Cramer C. L., Yang Z. Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control. Plant Cell. 1996 Dec;8(12):2381–2394. doi: 10.1105/tpc.8.12.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Riesmeier J. W., Willmitzer L., Frommer W. B. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994 Jan 1;13(1):1–7. doi: 10.1002/j.1460-2075.1994.tb06229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Roberts D. M., Besl L., Oh S. H., Masterson R. V., Schell J., Stacey G. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8394–8398. doi: 10.1073/pnas.89.17.8394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rodriguez-Concepcion M, Gruissem W. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation . Plant Physiol. 1999 Jan;119(1):41–48. doi: 10.1104/pp.119.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sakamoto K., Nagatani A. Nuclear localization activity of phytochrome B. Plant J. 1996 Nov;10(5):859–868. doi: 10.1046/j.1365-313x.1996.10050859.x. [DOI] [PubMed] [Google Scholar]
  52. Schafer W. R., Rine J. Protein prenylation: genes, enzymes, targets, and functions. Annu Rev Genet. 1992;26:209–237. doi: 10.1146/annurev.ge.26.120192.001233. [DOI] [PubMed] [Google Scholar]
  53. Smeekens S., Rook F. Sugar Sensing and Sugar-Mediated Signal Transduction in Plants. Plant Physiol. 1997 Sep;115(1):7–13. doi: 10.1104/pp.115.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Snedden W. A., Koutsia N., Baum G., Fromm H. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J Biol Chem. 1996 Feb 23;271(8):4148–4153. doi: 10.1074/jbc.271.8.4148. [DOI] [PubMed] [Google Scholar]
  55. Sonnewald U. Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J. 1992 Jul;2(4):571–581. [PubMed] [Google Scholar]
  56. Szymanski D. B., Liao B., Zielinski R. E. Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell. 1996 Jun;8(6):1069–1077. doi: 10.1105/tpc.8.6.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Trainin T., Shmuel M., Delmer D. P. In Vitro Prenylation of the Small GTPase Rac13 of Cotton. Plant Physiol. 1996 Dec;112(4):1491–1497. doi: 10.1104/pp.112.4.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Trewavas A. J., Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 Jul;9(7):1181–1195. doi: 10.1105/tpc.9.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Xu H, Heath MC. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus . Plant Cell. 1998 Apr;10(4):585–598. doi: 10.1105/tpc.10.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yalovsky S., Loraine A. E., Gruissem W. Specific Prenylation of Tomato Rab Proteins by Geranylgeranyl Type-II Transferase Requires a Conserved Cysteine-Cysteine Motif. Plant Physiol. 1996 Apr;110(4):1349–1359. doi: 10.1104/pp.110.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yalovsky S., Trueblood C. E., Callan K. L., Narita J. O., Jenkins S. M., Rine J., Gruissem W. Plant farnesyltransferase can restore yeast Ras signaling and mating. Mol Cell Biol. 1997 Apr;17(4):1986–1994. doi: 10.1128/mcb.17.4.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]
  63. Zhu J. K., Bressan R. A., Hasegawa P. M. Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8557–8561. doi: 10.1073/pnas.90.18.8557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zielinski Raymond E. CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):697–725. doi: 10.1146/annurev.arplant.49.1.697. [DOI] [PubMed] [Google Scholar]
  65. Zimmermann S., Nürnberger T., Frachisse J. M., Wirtz W., Guern J., Hedrich R., Scheel D. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2751–2755. doi: 10.1073/pnas.94.6.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 1990 Oct;9(10):3033–3044. doi: 10.1002/j.1460-2075.1990.tb07499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES