Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 May 4;18(9):2610–2620. doi: 10.1093/emboj/18.9.2610

Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster.

A Bashirullah 1, S R Halsell 1, R L Cooperstock 1, M Kloc 1, A Karaiskakis 1, W W Fisher 1, W Fu 1, J K Hamilton 1, L D Etkin 1, H D Lipshitz 1
PMCID: PMC1171340  PMID: 10228172

Abstract

Maternally synthesized RNAs program early embryonic development in many animals. These RNAs are degraded rapidly by the midblastula transition (MBT), allowing genetic control of development to pass to zygotically synthesized transcripts. Here we show that in the early embryo of Drosophila melanogaster, there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is targeted to specific classes of mRNAs through cis-acting elements in the 3'-untranslated region and is conserved in Xenopus laevis. The second pathway is activated 2 h after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT.

Full Text

The Full Text of this article is available as a PDF (352.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashirullah A., Cooperstock R. L., Lipshitz H. D. RNA localization in development. Annu Rev Biochem. 1998;67:335–394. doi: 10.1146/annurev.biochem.67.1.335. [DOI] [PubMed] [Google Scholar]
  2. Bergsten S. E., Gavis E. R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development. 1999 Feb;126(4):659–669. doi: 10.1242/dev.126.4.659. [DOI] [PubMed] [Google Scholar]
  3. Cooperstock RL, Lipshitz HD. Control of mRNA stability and translation during Drosophila development. Semin Cell Dev Biol. 1997 Dec;8(6):541–549. doi: 10.1006/scdb.1997.0179. [DOI] [PubMed] [Google Scholar]
  4. Dahanukar A., Wharton R. P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 1996 Oct 15;10(20):2610–2620. doi: 10.1101/gad.10.20.2610. [DOI] [PubMed] [Google Scholar]
  5. Ding D., Parkhurst S. M., Halsell S. R., Lipshitz H. D. Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol Cell Biol. 1993 Jun;13(6):3773–3781. doi: 10.1128/mcb.13.6.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ding D., Parkhurst S. M., Lipshitz H. D. Different genetic requirements for anterior RNA localization revealed by the distribution of Adducin-like transcripts during Drosophila oogenesis. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2512–2516. doi: 10.1073/pnas.90.6.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edgar B. A., Datar S. A. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev. 1996 Aug 1;10(15):1966–1977. doi: 10.1101/gad.10.15.1966. [DOI] [PubMed] [Google Scholar]
  8. Edgar B. A., Kiehle C. P., Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986 Jan 31;44(2):365–372. doi: 10.1016/0092-8674(86)90771-3. [DOI] [PubMed] [Google Scholar]
  9. Edgar B. A., O'Farrell P. H. Genetic control of cell division patterns in the Drosophila embryo. Cell. 1989 Apr 7;57(1):177–187. doi: 10.1016/0092-8674(89)90183-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edgar B. A., O'Farrell P. H. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell. 1990 Aug 10;62(3):469–480. doi: 10.1016/0092-8674(90)90012-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ephrussi A., Lehmann R. Induction of germ cell formation by oskar. Nature. 1992 Jul 30;358(6385):387–392. doi: 10.1038/358387a0. [DOI] [PubMed] [Google Scholar]
  12. Foe V. E., Alberts B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 1983 May;61:31–70. doi: 10.1242/jcs.61.1.31. [DOI] [PubMed] [Google Scholar]
  13. Foe V. E. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development. 1989 Sep;107(1):1–22. [PubMed] [Google Scholar]
  14. Gavis E. R., Lehmann R. Translational regulation of nanos by RNA localization. Nature. 1994 May 26;369(6478):315–318. doi: 10.1038/369315a0. [DOI] [PubMed] [Google Scholar]
  15. Gavis E. R., Lunsford L., Bergsten S. E., Lehmann R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development. 1996 Sep;122(9):2791–2800. doi: 10.1242/dev.122.9.2791. [DOI] [PubMed] [Google Scholar]
  16. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  17. Kim-Ha J., Webster P. J., Smith J. L., Macdonald P. M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development. 1993 Sep;119(1):169–178. doi: 10.1242/dev.119.1.169. [DOI] [PubMed] [Google Scholar]
  18. Kloc M., Larabell C., Etkin L. D. Elaboration of the messenger transport organizer pathway for localization of RNA to the vegetal cortex of Xenopus oocytes. Dev Biol. 1996 Nov 25;180(1):119–130. doi: 10.1006/dbio.1996.0289. [DOI] [PubMed] [Google Scholar]
  19. Kloc M., Miller M., Carrasco A. E., Eastman E., Etkin L. The maternal store of the xlgv7 mRNA in full-grown oocytes is not required for normal development in Xenopus. Development. 1989 Dec;107(4):899–907. doi: 10.1242/dev.107.4.899. [DOI] [PubMed] [Google Scholar]
  20. Lieberfarb M. E., Chu T., Wreden C., Theurkauf W., Gergen J. P., Strickland S. Mutations that perturb poly(A)-dependent maternal mRNA activation block the initiation of development. Development. 1996 Feb;122(2):579–588. doi: 10.1242/dev.122.2.579. [DOI] [PubMed] [Google Scholar]
  21. Mahowald A. P., Goralski T. J., Caulton J. H. In vitro activation of Drosophila eggs. Dev Biol. 1983 Aug;98(2):437–445. doi: 10.1016/0012-1606(83)90373-1. [DOI] [PubMed] [Google Scholar]
  22. Merrill P. T., Sweeton D., Wieschaus E. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development. 1988 Nov;104(3):495–509. doi: 10.1242/dev.104.3.495. [DOI] [PubMed] [Google Scholar]
  23. Nakamura A., Amikura R., Mukai M., Kobayashi S., Lasko P. F. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science. 1996 Dec 20;274(5295):2075–2079. doi: 10.1126/science.274.5295.2075. [DOI] [PubMed] [Google Scholar]
  24. O'Farrell P. H., Edgar B. A., Lakich D., Lehner C. F. Directing cell division during development. Science. 1989 Nov 3;246(4930):635–640. doi: 10.1126/science.2683080. [DOI] [PubMed] [Google Scholar]
  25. Page A. W., Orr-Weaver T. L. The Drosophila genes grauzone and cortex are necessary for proper female meiosis. J Cell Sci. 1996 Jul;109(Pt 7):1707–1715. doi: 10.1242/jcs.109.7.1707. [DOI] [PubMed] [Google Scholar]
  26. Raz E., Shilo B. Z. Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the EGF receptor homolog. Genes Dev. 1993 Oct;7(10):1937–1948. doi: 10.1101/gad.7.10.1937. [DOI] [PubMed] [Google Scholar]
  27. Reed B. H., Orr-Weaver T. L. The Drosophila gene morula inhibits mitotic functions in the endo cell cycle and the mitotic cell cycle. Development. 1997 Sep;124(18):3543–3553. doi: 10.1242/dev.124.18.3543. [DOI] [PubMed] [Google Scholar]
  28. Riedl A., Jacobs-Lorena M. Determinants of Drosophila fushi tarazu mRNA instability. Mol Cell Biol. 1996 Jun;16(6):3047–3053. doi: 10.1128/mcb.16.6.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  30. Sallés F. J., Lieberfarb M. E., Wreden C., Gergen J. P., Strickland S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science. 1994 Dec 23;266(5193):1996–1999. doi: 10.1126/science.7801127. [DOI] [PubMed] [Google Scholar]
  31. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. doi: 10.1093/genetics/121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sibon O. C., Stevenson V. A., Theurkauf W. E. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature. 1997 Jul 3;388(6637):93–97. doi: 10.1038/40439. [DOI] [PubMed] [Google Scholar]
  33. Smibert C. A., Wilson J. E., Kerr K., Macdonald P. M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 1996 Oct 15;10(20):2600–2609. doi: 10.1101/gad.10.20.2600. [DOI] [PubMed] [Google Scholar]
  34. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  35. Steller H., Pirrotta V. A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO J. 1985 Jan;4(1):167–171. doi: 10.1002/j.1460-2075.1985.tb02332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  37. Wang C., Lehmann R. Nanos is the localized posterior determinant in Drosophila. Cell. 1991 Aug 23;66(4):637–647. doi: 10.1016/0092-8674(91)90110-k. [DOI] [PubMed] [Google Scholar]
  38. Wharton R. P., Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell. 1991 Nov 29;67(5):955–967. doi: 10.1016/0092-8674(91)90368-9. [DOI] [PubMed] [Google Scholar]
  39. Yasuda G. K., Baker J., Schubiger G. Temporal regulation of gene expression in the blastoderm Drosophila embryo. Genes Dev. 1991 Oct;5(10):1800–1812. doi: 10.1101/gad.5.10.1800. [DOI] [PubMed] [Google Scholar]
  40. Zimmerman J. L., Petri W., Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 1983 Apr;32(4):1161–1170. doi: 10.1016/0092-8674(83)90299-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES